Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Brian Gray, J.
Дата выпуска 1988
dc.description Several influence measures have been developed for evaluating the effects of individual cases on parameter estimates, fitted values, and other least squares regression statistics. Cook and Weisberg (1982), Hocking (1983), and other feel that the average user of regression diagnostics would be overwhelmed and confused by the use of all such diagnostics. However, as Hocking (1983) points out, evidence from which to draw conclusions about the relative merits of existing influence measures in insufficient to make general recommendations about their use. The study provides a complete and systematic graphical exposition of twenty–one existing influence measures. The resulting classification of these measures into five similarity classes greatly simplifies the influence diagnostics menu. Recommendations based on the results of this analysis are made for the use of influence diagnostics.
Формат application.pdf
Издатель Gordon and Breach Science Publishers
Копирайт Copyright Taylor and Francis Group, LLC
Тема Regression diagnostics
Тема influential data
Тема iso–influence contour plots
Название A Classification of influence measures
Тип research-article
DOI 10.1080/00949658808811094
Electronic ISSN 1563-5163
Print ISSN 0094-9655
Журнал Journal of Statistical Computation and Simulation
Том 30
Первая страница 159
Последняя страница 171
Аффилиация Brian Gray, J.; M.J. Neeley School of Business, Texas Christian University
Выпуск 3
Библиографическая ссылка Andrews, D.F. and Pregibon, D. 1978. “Finding the outliers that matter”. In Journal of the Royal Statistical Society, B Vol. 40, 85–93.
Библиографическая ссылка Atkinson, A.C. 1981. Two graphical displays for outlying and influential observations in regression. Biometrika, 68: 13–20.
Библиографическая ссылка Belsley, D.A., Kuh, E. and Welsch, R.E. 1980. “Regression Diagnostics: Identifying Influential Data and Sources of Collinearity.”. New York: Wiley.
Библиографическая ссылка Brant, R. 1986. Comment. Statistical Science, 1: 405–407.
Библиографическая ссылка Hatterjee, S. and Hadi, A.S. 1986. Influential observations, high leverage points, and outliers in linear regression. Statistical Science, 1: 415–416.
Библиографическая ссылка Cook, R.D. 1977. Detection of influential observations in linear regression. Technometrics, 19: 15–18.
Библиографическая ссылка Cook, R.D. 1979. Influential observations in linear regression. Journal of the American Statistical Association, 74: 169–174.
Библиографическая ссылка Cook, R.D. 1986. Comment. Statistical Science, 1: 393–397.
Библиографическая ссылка Cook, R.D. 1986. “Assessment of local influence”. In Journal of Royal Statistical Society, B Vol. 48, 133–169.
Библиографическая ссылка Cook, R.D. and Weisberg, S. 1980. Characterizations of an empirical influence function for detecting influential cases in regression. Technometrics, 22: 495–508.
Библиографическая ссылка Cook, R.D. and Weisberg, S. 1982. “Residuals and Influence in Regression”. New York Chapman and Hall
Библиографическая ссылка Draper, N.R. and John, J.A. 1981. Influential observations and outliers in regression. Technometrics, 23: 21–26.
Библиографическая ссылка Gray, J.B. 1986. A simple graphic for assessing influence in regression. Journal of Statistical Computation and simulation, 24: 121–134.
Библиографическая ссылка Gray, J.B. 1987a. An internally scaled measure of influence. Proceedings of the Statistical Computing Section of the American Statistical Association, 24: 397–401.
Библиографическая ссылка Gray, J.B. 1987b. The four–measure influence plot. 24 Under review
Библиографическая ссылка Hoaglin, D.C. and Welsch, R.E. 1978. The hat matrix in regression and ANOVA. The American Statistician, 32: 17–22.
Библиографическая ссылка Hocking, R.R. 1983. Developments in linear regression methodology:1959–1982. Technometrics, 25: 219–230.
Библиографическая ссылка Johnson, W. and Geisser, S. 1983. A predictive view of the detection and characterization of influential observations in regression analysis. Journal of the American Statistical Association, 78: 137–144.
Библиографическая ссылка McCulloch, C.E. and Meeter, D. 1983. Discussion. Technometrics, 25: 152–155.
Библиографическая ссылка Welsch, R.E., Launer, R. and Siegel, S. 1982. “Influence functions and regression diagnostics”. In Modern Data Analysis, Edited by: Siegel, S. New York: Academic Press.

Скрыть метаданые