Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Doguwa, Sani I.
Дата выпуска 1989
dc.description A new edge—corrected kernel—based estimator is proposed for the density function of the nearest neighbour distance of a stationary and isotropic point process. The performances of the new estimator and the existing estimators are compared in a simulation study. The results of the simulation study suggest that the new estimator is preferable to the existing alternatives. The use of the estimators for testing whether a spatial point pattern is consistent with the hypothesis of a Poisson process is demonstrated by a geographical example
Формат application.pdf
Издатель Gordon and Breach Science Publishers
Копирайт Copyright Taylor and Francis Group, LLC
Тема Bias
Тема density estimation
Тема edge effects
Тема mean squared error
Тема mapped point patterns
Тема nearest neighbour distances
Тема point processes
Тема Pinus ponderosa
Тема simulation study
Название A comparative study of the edge—corrected kernel—based nearest neighbour density estimators for point processes
Тип research-article
DOI 10.1080/00949658908811189
Electronic ISSN 1563-5163
Print ISSN 0094-9655
Журнал Journal of Statistical Computation and Simulation
Том 33
Первая страница 83
Последняя страница 100
Аффилиация Doguwa, Sani I.; Department of Mathematics, Ahmadu Bello University
Выпуск 2
Библиографическая ссылка Bowman, A.W. 1985. A comparative study of some kernel—based nonparametric density estimators. J. Statist. Comput. Simul, 21: 313–327.
Библиографическая ссылка Diggle, P.J. 1975. Robust density estimation using distance methods. Biometrika, 62: 39–48.
Библиографическая ссылка Diggle, P.J. 1979. On parameter estimation and goodness—of—fit testing for spatial point patterns. Biometrics, 35: 87–101.
Библиографическая ссылка Doguwa, S.I. 1989. “On second order neighbourhood analysis of mapped point patterns”. Biometrics Journal.
Библиографическая ссылка Doguwa, S.I. and Upton, G.J.G. 1989. “On the estimation of the nearest neighbour distance distribution, G(t), for point processes”. Biometrical Journal.
Библиографическая ссылка Epanechnikov, V.A. 1969. Nonparametric estimation of a multidimensional probability density. Thear. Prabab. Appl, 14: 153–158.
Библиографическая ссылка Fikesl, T. 1988. Edge—corrected density estimators for point processes. Statistics, 19: 67–75.
Библиографическая ссылка Fryer, M.1. 1977. A review of some non—parametric methods of density estimation. J. lnst. Maths. Applies, 20: 335–354.
Библиографическая ссылка Getis, A. 1987. Second order neighbourhood analysis of mapped point patterns. Ecology, 68: 473–477.
Библиографическая ссылка Hanisch, K.H. 1984. Some remarks on the estimation of the distribution of nearest neighbour distance in stationary spatial point patterns. M athematische Operationsforschung und Statistik Series Statistics, 15: 409–412.
Библиографическая ссылка Neyman, J. and Scott, E.L. 1958. A statistical approach to problems of cosmology. Journal of the Royal Statistical Society B, 20: 1–43.
Библиографическая ссылка Silverman, B.W. 19. “Density Estimation for Statistics and Data Analysis”. London: Chapman and Hall.

Скрыть метаданые