Автор |
Doguwa, Sani I. |
Дата выпуска |
1989 |
dc.description |
A new edge—corrected kernel—based estimator is proposed for the density function of the nearest neighbour distance of a stationary and isotropic point process. The performances of the new estimator and the existing estimators are compared in a simulation study. The results of the simulation study suggest that the new estimator is preferable to the existing alternatives. The use of the estimators for testing whether a spatial point pattern is consistent with the hypothesis of a Poisson process is demonstrated by a geographical example |
Формат |
application.pdf |
Издатель |
Gordon and Breach Science Publishers |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Bias |
Тема |
density estimation |
Тема |
edge effects |
Тема |
mean squared error |
Тема |
mapped point patterns |
Тема |
nearest neighbour distances |
Тема |
point processes |
Тема |
Pinus ponderosa |
Тема |
simulation study |
Название |
A comparative study of the edge—corrected kernel—based nearest neighbour density estimators for point processes |
Тип |
research-article |
DOI |
10.1080/00949658908811189 |
Electronic ISSN |
1563-5163 |
Print ISSN |
0094-9655 |
Журнал |
Journal of Statistical Computation and Simulation |
Том |
33 |
Первая страница |
83 |
Последняя страница |
100 |
Аффилиация |
Doguwa, Sani I.; Department of Mathematics, Ahmadu Bello University |
Выпуск |
2 |
Библиографическая ссылка |
Bowman, A.W. 1985. A comparative study of some kernel—based nonparametric density estimators. J. Statist. Comput. Simul, 21: 313–327. |
Библиографическая ссылка |
Diggle, P.J. 1975. Robust density estimation using distance methods. Biometrika, 62: 39–48. |
Библиографическая ссылка |
Diggle, P.J. 1979. On parameter estimation and goodness—of—fit testing for spatial point patterns. Biometrics, 35: 87–101. |
Библиографическая ссылка |
Doguwa, S.I. 1989. “On second order neighbourhood analysis of mapped point patterns”. Biometrics Journal. |
Библиографическая ссылка |
Doguwa, S.I. and Upton, G.J.G. 1989. “On the estimation of the nearest neighbour distance distribution, G(t), for point processes”. Biometrical Journal. |
Библиографическая ссылка |
Epanechnikov, V.A. 1969. Nonparametric estimation of a multidimensional probability density. Thear. Prabab. Appl, 14: 153–158. |
Библиографическая ссылка |
Fikesl, T. 1988. Edge—corrected density estimators for point processes. Statistics, 19: 67–75. |
Библиографическая ссылка |
Fryer, M.1. 1977. A review of some non—parametric methods of density estimation. J. lnst. Maths. Applies, 20: 335–354. |
Библиографическая ссылка |
Getis, A. 1987. Second order neighbourhood analysis of mapped point patterns. Ecology, 68: 473–477. |
Библиографическая ссылка |
Hanisch, K.H. 1984. Some remarks on the estimation of the distribution of nearest neighbour distance in stationary spatial point patterns. M athematische Operationsforschung und Statistik Series Statistics, 15: 409–412. |
Библиографическая ссылка |
Neyman, J. and Scott, E.L. 1958. A statistical approach to problems of cosmology. Journal of the Royal Statistical Society B, 20: 1–43. |
Библиографическая ссылка |
Silverman, B.W. 19. “Density Estimation for Statistics and Data Analysis”. London: Chapman and Hall. |