Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Thompson, A.M.
Автор Kay, J.W.
Автор Titterington, D.M.
Дата выпуска 1989
Формат application.pdf
Издатель Gordon and Breach Science Publishers
Копирайт Copyright Taylor and Francis Group, LLC
Тема Crossvalidatin
Тема regularization
Тема ridge regression
Тема smoothing
Название A cautionary note about crossvalidatory choice
Тип research-article
DOI 10.1080/00949658908811198
Electronic ISSN 1563-5163
Print ISSN 0094-9655
Журнал Journal of Statistical Computation and Simulation
Том 33
Первая страница 199
Последняя страница 216
Аффилиация Thompson, A.M.; Department of Statistics, University Gardens
Аффилиация Kay, J.W.; Department of Statistics, University Gardens
Аффилиация Titterington, D.M.; Department of Statistics, University Gardens
Выпуск 4
Библиографическая ссылка Eubank, R.L. “Diagnostics for smoothing splines”. In Journal of the Royal Statistical Society, B 47 332–341.
Библиографическая ссылка Golub, G., Heath, M. and Wahba, G. 1979. Generalizd cross—validation as a method for choosing a good ridge parameter. Technometrics, 21: 215–223.
Библиографическая ссылка Golub, G.H. and Van Loan, C.H. in press. Matrix Computations,
Библиографическая ссылка Green, P., Jennison, C. and Seheult, A. “Analysis of field experiments by least squares smoothing”. In Journal of the Royal Statistical Society, B 47 299–315.
Библиографическая ссылка Hall, P. and Titterington, D.M. “Common structure of techniques for choosing smoothing parameters in regression problems”. In Journal of the Royal Statistical Society, B 49 184–198.
Библиографическая ссылка Hardle, W., Hall, P. and Marron, J.S. 1988. How far are automatically chosen regression smoothing parameters from their optimum. Journal of the American Statistical Association, 83: 86–101.
Библиографическая ссылка Kay, J.W. “On the choice of regularisation parameter in image restoration”. In Pattern Recognition Lecture Notes in Computer Science
Библиографическая ссылка Kay, J.W. “Asymptotic comparison factors for smoothing parameter choices in linear regression”. In Submitted for publication
Библиографическая ссылка Kay, J.W. 1989b. A comparison of smoothing parameterchoices in image restoration. Proc.IMS Mtg.Spatial Statist.and Imaging. To appear.Institute Math.Statist,
Библиографическая ссылка NAG. 1989b. Nag Fortran,Mark 11. Numerical Algorithms Group, Oxford
Библиографическая ссылка Scott, D.W. and Terrell, G.R. 1987. Biased and unbiased crossvalidation in density estimation. Journal of the American Statistical Association, 82: 1131–1146.
Библиографическая ссылка Silverman, B.W. 1984. A fast and efficient cross-validation method for smoothing parameter choice in spline regression. Journal of the American Statistical Association, 79: 584–589.
Библиографическая ссылка Silverman, B.W. “Some aspects of the spline smoothing approach to nonparametric regression curve fitting(with Discussion)”. In Journal of the Royal Statistical Society, B 47 1–52.
Библиографическая ссылка Thompson, A.M., Brown, J.C., Kay, J.W. and Titterington, D.M. “A comparison of methods of choosing the smoothing parameter in image restoration by regularization”. Submitted for publication
Библиографическая ссылка Titterington, D.M. 1985. Common structure of smoothing techniques in statistics. International Statistical Review, 53: 141–170.
Библиографическая ссылка Wahba, G. 1977. Practical Approximate solutions to linear operator equations when the data are noisy. SIAM Journal of Numerical Analysis, 14: 651–667.
Библиографическая ссылка Wahba, G. “Bayesian “confidence intervals” for the crossvalidated smoothing spline”. In Journal of the Royal Statistical Society, B 45 133–150.
Библиографическая ссылка Wahba, G. and Wang, Y. “When is the optimal regularisation parameter insensitive to the choice of loss function”. In Technical Report No.809

Скрыть метаданые