Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Singh, V.P.
Автор Cruise, J.F.
Автор Ma, Ming
Дата выпуска 1990
dc.description The Weibull distribution is a two-parameter distribution that contains the exponential distribution as a special case and that is generalized to the extreme value type 3 distribution by a linear transformation. Its parameters and quantiles were estimated by the methods of moments, probability weighted moments, maximum likelihood estimation, entropy and least squares for Monte Carlo generated samples. The performance of these estimators was statistically compared, with the objective of identifying the most robust estimator from amongst them. Maximum likelihood and entropy demonstrated the most robustness compared to the other methods. Probability weighted moments performed well for samples which demonstrated large variability, while ordinary moments showed the least variability of estimates in the tails of the distribution from very small sample sizes.
Формат application.pdf
Издатель Gordon and Breach Science Publishers
Копирайт Copyright Taylor and Francis Group, LLC
Тема Computer Simulation
Тема Method of Moments
Тема Maximum Likelihood
Тема Entropy
Тема Prob-ability Weighted Moments
Тема Least Squares
Название A comparative evaluation of the estimators of the weibull distribution by monte carlo simulation
Тип research-article
DOI 10.1080/00949659008811285
Electronic ISSN 1563-5163
Print ISSN 0094-9655
Журнал Journal of Statistical Computation and Simulation
Том 36
Первая страница 229
Последняя страница 241
Аффилиация Singh, V.P.; Department of Civil Engineering, Louisiana State University
Аффилиация Cruise, J.F.; Department of Civil Engineering, Louisiana State University
Аффилиация Ma, Ming; Department of Civil Engineering, Louisiana State University
Выпуск 4
Библиографическая ссылка Arora, K and Singh, V.P. 1987. On statistical intercomparison of EVI estimators by Monte Carlo simulation. Adv. Water Resources, 10: 87–107.
Библиографическая ссылка Fiorentino, M, Arora, K and Singh, V.P. 1987. The two-component extreme value distribution for flood frequency analysis: Derivation of a new estimation method. Stochastic HydroL Hydraul, 1: 199–208.
Библиографическая ссылка Greenwood, J.A, Landwehr, J.M, Matalas, N.C and Wallis, J.R. 1979. Probability weightedmoments: Definition and relation to parameters of several distributions expressible in inverse form. Water Resources Research, 15: 1049–1054.
Библиографическая ссылка Hosking, J.R.M and Wallis, J.R. 1987. Parameter and quantile estimation for the generalized Pareto distribution. Technometrics, 29(3): 339–349.
Библиографическая ссылка Jaynes, E.T. 1961. Probability Theory in Science and Engineering, NewYork: McGraw-Hill Book Company.
Библиографическая ссылка Kuczera, G. 1982a. Combining site-specific and regional information: An empirical Bayes approach. Water Resources Research, 18(2): 306–314.
Библиографическая ссылка Kuczera, G. 1982b. Robust flood frequency models. Water Resources Research, 18(2): 315–324.
Библиографическая ссылка Landwehr, J.M, Matalas, N.C and Wallis, J.R. 1979. Probability weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles. Water Resources Research, 15(2): 1055–1064.
Библиографическая ссылка Rao, A.R and Chenchayya, B.T. 1974. Probabilistic analysis and simulation of the short-term increment rainfall process, West Lafayette, Indiana: Purdue University, Water Resources Research Center. Technical report no. 55
Библиографическая ссылка Singh, V. 1987. On application of the Weibull distribution in hydrology. Water Resources Management, 1: 33–43.
Библиографическая ссылка Singh, V.P, Cruise, J.F and Ma, M. 1989. A comparative evaluation of the estimators of two distributions by Monte Carlo simulation, Baton Rouge, LA: Louisiana State University. Technical report WRR13, Water Resourecs Program, Department of Civil Engineering

Скрыть метаданые