Автор |
Terza, Joseph V. |
Автор |
Welland, Ulrich |
Дата выпуска |
1991 |
dc.description |
Statistical methods that implement numerical approximations to the Bivariate Normal (BN) distribution function require high accuracy. Most notable are those involving optimization (e.g., maximum likelihood and nonlinear least squares). Unfortunately high accuracy comes at the cost of increased computation time. For this reason, in the present paper we compare eight Bivariate Normal (BN) approximation algorithms with regard to the accuracy speed trade-off. The method developed by Divgi (1979) emerges as the clear method of choice, achieving 14-digit accuracy ten and a half times faster than its nearest competitor. Furthermore, in the time required by Divgi's approximation to reach this level of precision none of the other methods can support better than 3-digit accuracy. |
Формат |
application.pdf |
Издатель |
Gordon and Breach Science Publishers |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Gaussian quadrature |
Тема |
series approximation |
Тема |
polynomial approximation |
Тема |
T-function |
Тема |
W-function |
Название |
A comparison of bivariate normal algorithms |
Тип |
research-article |
DOI |
10.1080/00949659108811343 |
Electronic ISSN |
1563-5163 |
Print ISSN |
0094-9655 |
Журнал |
Journal of Statistical Computation and Simulation |
Том |
39 |
Первая страница |
115 |
Последняя страница |
127 |
Аффилиация |
Terza, Joseph V.; Department of Economics, The Pennsylvania State University |
Аффилиация |
Welland, Ulrich; Department of Economics, University of Georgia |
Выпуск |
1-2 |
Библиографическая ссылка |
Borth, D. 1973. A modification of Owen's method for computing the bi-variate normal integral. Applied Statistics, 22: 82–85. |
Библиографическая ссылка |
Bouver, H. and Bargmann, R.E. Comparison of computational algorithms for the evaluation of the univariate and bivariate normal distribution. Proceedings of the Computer Science and Statistics: 12th Annual Symposium on the Interface. pp.344–348. |
Библиографическая ссылка |
Daley, D.J. 1974. Computation of bi- and tri-variate normal integrals. Applied Statistics, 23: 435–438. |
Библиографическая ссылка |
Divgi, D.R. 1979. Calculation of univariate and bivariate normal probability functions. Annals of Statistics, 7: 903–910. |
Библиографическая ссылка |
Donnelly, T.G. 1973. Algorithm 462: Bivariate normal distribution. Communications of the Association for Computing Machinery, 16: 636 |
Библиографическая ссылка |
Drezner, Z. 1978. Computation of the bivariate normal integral. Mathematics of Computation, 32: 277–279. |
Библиографическая ссылка |
Gideon, R.A. and Gurland, J. 1978. A polynomial type approximation for bivariate normal variates. SIAM Journal of Applied Mathematics, 4: 681–684. |
Библиографическая ссылка |
IMSL. 1987. IMSL Subroutine Library Documentation, Houston: IMSL. |
Библиографическая ссылка |
Lether, E.M. 1978. Application of nonstandard Gaussian quadrature to multiple integrals in statistics, University of Georgia. Master's Thesis, Department of statistics |
Библиографическая ссылка |
Mee, R.W. and Owen, D.B. 1983. A simple approximation for bivariate normal probabilities. Journal of Quality Technology, 15: 72–75. |
Библиографическая ссылка |
National Bureau of Standards. 1959. “Applied Mathematics Series”. In Tables of the Bivariate Normal Distribution Function and Related Functions, Vol. 50, U.S Government Printing Office. Superintendent of Documents |
Библиографическая ссылка |
Owen, D.B. 1956. Tables for computing bivariate normal probabilities. Annals of Mathematical Statistics, 27: 1075–1090. |
Библиографическая ссылка |
Parrish, R.S. and Bargmann, R.E. 1981. A method for the evaluation of cumulative probabilities of bivariate distributions using the Pearson family. Statistical Distributions in Scientific Work, 5: 241–257. |
Библиографическая ссылка |
Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. 1986. Numerical Recipes, New York: Cambridge University Press. |
Библиографическая ссылка |
Ruben, H. 1961. Probability contents in regions under spherical normal distributions, III: Thebivariate normal integral. Annals of Mathematical Statistics, 32: 171–186. |
Библиографическая ссылка |
Sheppard, W.F. 1900. On the calculation of the double integral expressing normal correlation. Transactions of the Cambridge Philosophical Society, 19: 23–69. |
Библиографическая ссылка |
Steen, M.N., Byrne, G.O. and Gelbard, E.M. 1969. Gaussian quadratures. Mathematics of Computation, 23: 661–671. |
Библиографическая ссылка |
Young, J.C. and Minder, C.E. 1974. Algorithm AS 76: An integral useful in calculating non-central t and bi-variate normal probabilities. Applied Statistics, 23: 455–457. |