Автор |
Fong, Duncan K.H. |
Дата выпуска |
1992 |
dc.description |
A hierarchical Bayesian approach to the problem of estimating the largest normal mean is considered. Calculation of the posterior mean and the posterior variance involves, at worst, 3-dimensional numerical integration, for which an efficient Monte Carlo method of evaluation is given. An example is presented to illustrate the methodology. In the two populations case, computation of the posterior estimates can be substantially simplified and in special cases can actually be performed using closed form solutions. A simulation study has been done to compare mean square errors of some hierarchical Bayesian estimators that are expressed in closed forms and several existing estimators of the larger mean. |
Формат |
application.pdf |
Издатель |
Gordon and Breach Science Publishers |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Hierarchical Bayes |
Тема |
largest mean |
Тема |
estimation |
Тема |
exchangeability |
Тема |
Monte Carlo integration with antithetic acceleration |
Тема |
simulation comparison |
Название |
A bayesian approach to the estimation of the largest normal mean |
Тип |
research-article |
DOI |
10.1080/00949659208811370 |
Electronic ISSN |
1563-5163 |
Print ISSN |
0094-9655 |
Журнал |
Journal of Statistical Computation and Simulation |
Том |
40 |
Первая страница |
119 |
Последняя страница |
133 |
Аффилиация |
Fong, Duncan K.H.; The Pennsylvania State University |
Выпуск |
1-2 |
Библиографическая ссылка |
Berger, J.O. 1985. Statistical Decision Theory and Bayesian Analysis, New York: Springer-Verlag. |
Библиографическая ссылка |
Berger, J.O. and Deely, J.J. 1988. A bayesian approach to ranking and selection of related means with alternatives to analysis-of-variance methodology. J. Amer. Statist. Assoc, 83: 364–373. |
Библиографическая ссылка |
Blumenthal, S. 1975. Sequential estimation of the largest normal mean when variance is unknown. Comm. Statist, 4: 655–669. |
Библиографическая ссылка |
Blumenthal, S. 1976. Sequential estimation of the largest normal mean when variance is known. Ann. Statist, 4: 1007–1087. |
Библиографическая ссылка |
Blumenthal, S. 1984. “Subset estimators of the largest mean”. In Design of Experiments: Ranking and Selection, Edited by: Santner, T.J. and Tarnhane, A.C. 251–268. New York: Marcel Dekker. |
Библиографическая ссылка |
Blumenthal, S. and Cohen, A. 1968. Estimation of the larger of two normal means. J. Amer. Statist. Assoc, 63: 861–876. |
Библиографическая ссылка |
Cohen, A. and Sackrowitz, H.B. 1982. “Estimating the mean of the selected population”. In Statistical Decision Theory and Related Topics-III, Edited by: Berger, J.O. Vol. 1, 243–270. New York: Academic Press. |
Библиографическая ссылка |
Cohen, A. and Sackrowitz, H.B. 1988. “A decision theory formulation of population selection followed by estimating the mean of the selected population”. In Statistical Decision Theory and Related Topics IV, Edited by: Berger, J.O. Vol. 2, 33–36. New York: Springer Verlag. |
Библиографическая ссылка |
Dahiya, R.C. 1974. Estimation of the mean of the selected population. J. Amer. Statist. Assoc, 69: 226–230. |
Библиографическая ссылка |
Dudewicz, E.J. 1971. Maximum likelihood estimators for ranked means. Z. Wahrsch. Verw. Geb, 19: 29–42. |
Библиографическая ссылка |
Dudewicz, E.J. 1973. Maximum probability estimators of ranked means. Annals lnst, Statist. Math, 25: 467–477. |
Библиографическая ссылка |
Dudewicz, E.J. and Koo, J.O. 1982. The Complete Categorized Guide to Statistical Selection and Ranking Procedures, Columbus, Ohio: American Sciences Press. |
Библиографическая ссылка |
Efron, B. and Morris, C. 1977. Stein's paradox in statistics. Scientific American, 236(5): 119–127. |
Библиографическая ссылка |
Fong, D.K.H. 1987. Ranking and Estimation of Exchangeable Means in Balanced and Unbalanced Models: A Bayesian Approach, Purdue University. Ph.D. Thesis |
Библиографическая ссылка |
Geweke, J. 1988. Antithetic acceleration of monte carlo integration in bayesian inference. Journal of Econometrics, 38: 73–89. |
Библиографическая ссылка |
Gupta, S.S. and Miescke, K.J. 1988. “On the problem of finding the largest normal mean under heteroscedasticity”. In Statistical Decision Theory and Related Topics-IV, Edited by: Gupta, S.S. and Berger, J.O. Vol. 2, 37–49. New York: Springer Verlag. |
Библиографическая ссылка |
Jeyaratnam, S. and Panchapakesan, S. 1984. “An estimation problem relating to subset selection for normal populations”. In Design of Experiments: Ranking and Selection, Edited by: Tamhane, A.C. 287–302. New York: Marcel Dekker. |
Библиографическая ссылка |
Mendenhall, W. and Sincich, T. 1989. A Second Course in Business Statistics: Regression Analysis, San Francisco: Dellen Publishing Company. |
Библиографическая ссылка |
Rubin, D.B. 1981. Estimation in parallel randomized experiments. Journal of Education Statistics, 6(4): 377–400. |
Библиографическая ссылка |
Sackrowitz, H.B. and Sarnuel-Cahn, E. 1986. “Evaluating the chosen population: A Bayes and minimax approach”. In Adaptive Statistical Procedures and Related Topic, Edited by: Van Ryzin, J. Vol. 8, 386–399. IMS Lecture Notes—Monograph. Series |
Библиографическая ссылка |
Sarkadi, K. 1967. Estimation after selection. Studia Scientiarum Mathematicarum Hungarica, 2: 341–350. |
Библиографическая ссылка |
Venter, J.H. 1988. Estimation of the mean of the selected population. Communications in Statistics Theory and Methods, 17: 791–805. |