Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Fong, Duncan K.H.
Дата выпуска 1992
dc.description A hierarchical Bayesian approach to the problem of estimating the largest normal mean is considered. Calculation of the posterior mean and the posterior variance involves, at worst, 3-dimensional numerical integration, for which an efficient Monte Carlo method of evaluation is given. An example is presented to illustrate the methodology. In the two populations case, computation of the posterior estimates can be substantially simplified and in special cases can actually be performed using closed form solutions. A simulation study has been done to compare mean square errors of some hierarchical Bayesian estimators that are expressed in closed forms and several existing estimators of the larger mean.
Формат application.pdf
Издатель Gordon and Breach Science Publishers
Копирайт Copyright Taylor and Francis Group, LLC
Тема Hierarchical Bayes
Тема largest mean
Тема estimation
Тема exchangeability
Тема Monte Carlo integration with antithetic acceleration
Тема simulation comparison
Название A bayesian approach to the estimation of the largest normal mean
Тип research-article
DOI 10.1080/00949659208811370
Electronic ISSN 1563-5163
Print ISSN 0094-9655
Журнал Journal of Statistical Computation and Simulation
Том 40
Первая страница 119
Последняя страница 133
Аффилиация Fong, Duncan K.H.; The Pennsylvania State University
Выпуск 1-2
Библиографическая ссылка Berger, J.O. 1985. Statistical Decision Theory and Bayesian Analysis, New York: Springer-Verlag.
Библиографическая ссылка Berger, J.O. and Deely, J.J. 1988. A bayesian approach to ranking and selection of related means with alternatives to analysis-of-variance methodology. J. Amer. Statist. Assoc, 83: 364–373.
Библиографическая ссылка Blumenthal, S. 1975. Sequential estimation of the largest normal mean when variance is unknown. Comm. Statist, 4: 655–669.
Библиографическая ссылка Blumenthal, S. 1976. Sequential estimation of the largest normal mean when variance is known. Ann. Statist, 4: 1007–1087.
Библиографическая ссылка Blumenthal, S. 1984. “Subset estimators of the largest mean”. In Design of Experiments: Ranking and Selection, Edited by: Santner, T.J. and Tarnhane, A.C. 251–268. New York: Marcel Dekker.
Библиографическая ссылка Blumenthal, S. and Cohen, A. 1968. Estimation of the larger of two normal means. J. Amer. Statist. Assoc, 63: 861–876.
Библиографическая ссылка Cohen, A. and Sackrowitz, H.B. 1982. “Estimating the mean of the selected population”. In Statistical Decision Theory and Related Topics-III, Edited by: Berger, J.O. Vol. 1, 243–270. New York: Academic Press.
Библиографическая ссылка Cohen, A. and Sackrowitz, H.B. 1988. “A decision theory formulation of population selection followed by estimating the mean of the selected population”. In Statistical Decision Theory and Related Topics IV, Edited by: Berger, J.O. Vol. 2, 33–36. New York: Springer Verlag.
Библиографическая ссылка Dahiya, R.C. 1974. Estimation of the mean of the selected population. J. Amer. Statist. Assoc, 69: 226–230.
Библиографическая ссылка Dudewicz, E.J. 1971. Maximum likelihood estimators for ranked means. Z. Wahrsch. Verw. Geb, 19: 29–42.
Библиографическая ссылка Dudewicz, E.J. 1973. Maximum probability estimators of ranked means. Annals lnst, Statist. Math, 25: 467–477.
Библиографическая ссылка Dudewicz, E.J. and Koo, J.O. 1982. The Complete Categorized Guide to Statistical Selection and Ranking Procedures, Columbus, Ohio: American Sciences Press.
Библиографическая ссылка Efron, B. and Morris, C. 1977. Stein's paradox in statistics. Scientific American, 236(5): 119–127.
Библиографическая ссылка Fong, D.K.H. 1987. Ranking and Estimation of Exchangeable Means in Balanced and Unbalanced Models: A Bayesian Approach, Purdue University. Ph.D. Thesis
Библиографическая ссылка Geweke, J. 1988. Antithetic acceleration of monte carlo integration in bayesian inference. Journal of Econometrics, 38: 73–89.
Библиографическая ссылка Gupta, S.S. and Miescke, K.J. 1988. “On the problem of finding the largest normal mean under heteroscedasticity”. In Statistical Decision Theory and Related Topics-IV, Edited by: Gupta, S.S. and Berger, J.O. Vol. 2, 37–49. New York: Springer Verlag.
Библиографическая ссылка Jeyaratnam, S. and Panchapakesan, S. 1984. “An estimation problem relating to subset selection for normal populations”. In Design of Experiments: Ranking and Selection, Edited by: Tamhane, A.C. 287–302. New York: Marcel Dekker.
Библиографическая ссылка Mendenhall, W. and Sincich, T. 1989. A Second Course in Business Statistics: Regression Analysis, San Francisco: Dellen Publishing Company.
Библиографическая ссылка Rubin, D.B. 1981. Estimation in parallel randomized experiments. Journal of Education Statistics, 6(4): 377–400.
Библиографическая ссылка Sackrowitz, H.B. and Sarnuel-Cahn, E. 1986. “Evaluating the chosen population: A Bayes and minimax approach”. In Adaptive Statistical Procedures and Related Topic, Edited by: Van Ryzin, J. Vol. 8, 386–399. IMS Lecture Notes—Monograph. Series
Библиографическая ссылка Sarkadi, K. 1967. Estimation after selection. Studia Scientiarum Mathematicarum Hungarica, 2: 341–350.
Библиографическая ссылка Venter, J.H. 1988. Estimation of the mean of the selected population. Communications in Statistics Theory and Methods, 17: 791–805.

Скрыть метаданые