Автор |
Sohn, So Young |
Дата выпуска |
1994 |
dc.description |
In this plaper,a random effect Poisson regression model is considered for prediction of the failiure rate which would follow a lognormal distribution.A two stage procedure is used to obtain the regression estimator of the failiure rate as well as the shrinkage estimator.These estimators are compared to both the raw estimator which entirely depends on the historical failiure records and a shrinkage estimator in whilch a gamma distribution is used mistakenly in place of the lognormal plrior distribution.Results of Monte-Carlo simulation indicate the following in terms of the MSE:(1)overall,the shrinkage estimator based on the lognormal prior distribution performs best;(2)with the failure rates (0-2.5),the performance of the shrinkage estimator based on the gamma distribution is not significantly different from that of the shrinkage estimator based on the lognormal distribution;(3)when there exists considerable variability in the failure rates(0-10),the raw estimator appears to replace shrinkage estimations.In terms of the Bias,the raw estimator performs better than the others. |
Формат |
application.pdf |
Издатель |
Gordon and Breach Science Publishers |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Poisson regression |
Тема |
Lognormal distribution |
Тема |
Shrinkage estimator |
Тема |
Two-Stage Estimation |
Тема |
Maximum likelihood estimation |
Название |
A comparative study of four estimators for analyzing the random event rate of the poisson process |
Тип |
research-article |
DOI |
10.1080/00949659408811556 |
Electronic ISSN |
1563-5163 |
Print ISSN |
0094-9655 |
Журнал |
Journal of Statistical Computation and Simulation |
Том |
49 |
Первая страница |
1 |
Последняя страница |
10 |
Аффилиация |
Sohn, So Young; Department of Operations Research, Naval Postgraduate School |
Выпуск |
1-2 |
Библиографическая ссылка |
GAMS. 1988. GAMS User's Guide , Redwood City, , CA: The Scientifilc Press. |
Библиографическая ссылка |
Gaver, D. F. 1985. Discrepancy-Tolerant Hierarchical Poisson Event-Rate Analysis. Naval Post-gratuate School Technical Report NPS55-85-016. 1985, Atlanta, GA. |
Библиографическая ссылка |
Gaver, D. F., Jacobs, P. A. and O'Muricheartaigh, I. G. 1990. Regerssion Analysis of Hierarchical Poisson-Like Event Rate Data:Superpopulation Model Effect on Predictors,. Communications in Statistics-Theory and Methodology, 19(10): 3779–3797. |
Библиографическая ссылка |
Hinde, J. 1982. “Compount Poission Regression Models In GLIM 82”. In Proceeding of International Conference in Generalised Linear Models, Edited by: Gilchrist, R. 109–121. Berlin: Springer-Verlag. |
Библиографическая ссылка |
Lawless, J. F. 1987. Regression Methods for Poission Process Data,. J. of American Statistical Association, 82(399): 808–815. |
Библиографическая ссылка |
SAS. 1989. “SAS User's Guide”. Cary, , NC: SAS Institute. |
Библиографическая ссылка |
Vonesh, E. F. and Carter, R. L. 1987. Efficient Inference for Random Coefficient Growth Curve Models with Unbalanced Data,. Biometrics, 43: 617–628. |