Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Sohn, So Young
Дата выпуска 1994
dc.description In this plaper,a random effect Poisson regression model is considered for prediction of the failiure rate which would follow a lognormal distribution.A two stage procedure is used to obtain the regression estimator of the failiure rate as well as the shrinkage estimator.These estimators are compared to both the raw estimator which entirely depends on the historical failiure records and a shrinkage estimator in whilch a gamma distribution is used mistakenly in place of the lognormal plrior distribution.Results of Monte-Carlo simulation indicate the following in terms of the MSE:(1)overall,the shrinkage estimator based on the lognormal prior distribution performs best;(2)with the failure rates (0-2.5),the performance of the shrinkage estimator based on the gamma distribution is not significantly different from that of the shrinkage estimator based on the lognormal distribution;(3)when there exists considerable variability in the failure rates(0-10),the raw estimator appears to replace shrinkage estimations.In terms of the Bias,the raw estimator performs better than the others.
Формат application.pdf
Издатель Gordon and Breach Science Publishers
Копирайт Copyright Taylor and Francis Group, LLC
Тема Poisson regression
Тема Lognormal distribution
Тема Shrinkage estimator
Тема Two-Stage Estimation
Тема Maximum likelihood estimation
Название A comparative study of four estimators for analyzing the random event rate of the poisson process
Тип research-article
DOI 10.1080/00949659408811556
Electronic ISSN 1563-5163
Print ISSN 0094-9655
Журнал Journal of Statistical Computation and Simulation
Том 49
Первая страница 1
Последняя страница 10
Аффилиация Sohn, So Young; Department of Operations Research, Naval Postgraduate School
Выпуск 1-2
Библиографическая ссылка GAMS. 1988. GAMS User's Guide , Redwood City, , CA: The Scientifilc Press.
Библиографическая ссылка Gaver, D. F. 1985. Discrepancy-Tolerant Hierarchical Poisson Event-Rate Analysis. Naval Post-gratuate School Technical Report NPS55-85-016. 1985, Atlanta, GA.
Библиографическая ссылка Gaver, D. F., Jacobs, P. A. and O'Muricheartaigh, I. G. 1990. Regerssion Analysis of Hierarchical Poisson-Like Event Rate Data:Superpopulation Model Effect on Predictors,. Communications in Statistics-Theory and Methodology, 19(10): 3779–3797.
Библиографическая ссылка Hinde, J. 1982. “Compount Poission Regression Models In GLIM 82”. In Proceeding of International Conference in Generalised Linear Models, Edited by: Gilchrist, R. 109–121. Berlin: Springer-Verlag.
Библиографическая ссылка Lawless, J. F. 1987. Regression Methods for Poission Process Data,. J. of American Statistical Association, 82(399): 808–815.
Библиографическая ссылка SAS. 1989. “SAS User's Guide”. Cary, , NC: SAS Institute.
Библиографическая ссылка Vonesh, E. F. and Carter, R. L. 1987. Efficient Inference for Random Coefficient Growth Curve Models with Unbalanced Data,. Biometrics, 43: 617–628.

Скрыть метаданые