Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Foster, Peter
Дата выпуска 1995
dc.description Methods for obtaining kernel-based density estimators with lower bias and mean integrated squared error than an estimator based on a standard Normal kernel function are described and discussed. Three main approaches are considered which are: firstly by using 'optimal' polynomial kernels as described, for example, by Gasser er a1 (1985); secondly by employing generalised jackknifing as proposed by Jones nd Foster (1993) and thirdly by subtracting an estimator of the principal asymptotic bias term from the original estimator. The emphasis in this initial discussion is on their asymptotic properties. The finite sample performance of those that have the best asymptotic properties are compared with two adaptive estimators, as well as the fixed Normal kernel estimator, in a simulation study.
Формат application.pdf
Издатель Gordon and Breach Science Publishers
Копирайт Copyright Taylor and Francis Group, LLC
Тема Bias reduction
Тема Density estimation
Тема Derivatives
Тема Jackknifing
Тема MISE
Тема Optimal kernels
Тема Smoothing
Название A comparative study of some bias correction techniques for kernel- based density estimators
Тип research-article
DOI 10.1080/00949659508811628
Electronic ISSN 1563-5163
Print ISSN 0094-9655
Журнал Journal of Statistical Computation and Simulation
Том 51
Первая страница 137
Последняя страница 152
Аффилиация Foster, Peter; Statistical Laboratory, Department of Mathematics, The University
Выпуск 2-4
Библиографическая ссылка Bartlett, M.S. 1963. “Statistical estimation of density functions”. Ser.A 245–254. Sankhya.
Библиографическая ссылка Bowman, A.W. 1985. A comparative study of some kernal-based nonparametric density estimators. J.Statist.Comput.Simul, 21: 313–327.
Библиографическая ссылка Bowman, A.W. and Foster, P.J. 1992. Adaptive smoothing and density based tests of multivariate normality. J.Amer.Statist.Assoc, 88: 529–537.
Библиографическая ссылка Foster, P.J. Kernel-based nonparametric density estimation and regression with statistical applications
Библиографическая ссылка Gajek, L. 1986. On improving density estimators which are not bona fide functions. Ann.Statist, 14: 1612–1618.
Библиографическая ссылка Gasser, T., Muller, H-G. and Mammitzsch, V. 1985. Kernels for nonparametric curve estimation. J.Roy.Statist.Soc, B47: 238–252.
Библиографическая ссылка Hall, P. 1992. Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability density. Ann.Statist, 20: 675–694.
Библиографическая ссылка Hand, D.L. 1982. “Kernel Discriminant Analysis”. Chichester: Research Studies Press.
Библиографическая ссылка Jones, M.C. and Foster, P.J. 1993. Generalised jackknifing and higher order kernels. Journal of Nonparametric Statistics.Nonparametric Statistics, 3: 81–94.
Библиографическая ссылка Marron, J.S. and Wand, M.P. 1992. Exact mean integrated squared error. Ann.Statist, 20: 712–736.
Библиографическая ссылка Muller, H-G. and Gasser, T. 1979. “Optimal convergence properties of kernel estimators of derivatives of a density function”. In In:Smoothing techniques for curve estimation, Edited by: Gasser, T. and Rosenblatt, M. Vol. 757, Lecture Notes in Mathematics.
Библиографическая ссылка Parzen, E. 1962. On estimation of a probability density function and mode. Ann.Math.Statist, 33: 1065–1076.
Библиографическая ссылка Rosenblatt, M. 1956. Remarks on some nonparametric estimates of a density function. Ann.Math.Statist, 27: 832–837.
Библиографическая ссылка Schucany, W.R. and Sommers, J.P. 1977. Improvement of kernel-type density estimators. J.Arne Statist.Assoc, 72: 420–423.
Библиографическая ссылка Scott, D.W. 1992. “Multivariate density estimation: theory, practice and visualisation”. New York: Wiley.
Библиографическая ссылка Silverman, B.W. 1986. Density estimation for statistics and data analysis, London: Chapman and Hall.
Библиографическая ссылка Terrell, G.R. and Scott, D.W. 1980. On improving convergence rates for nonnegative kernal density estimators. Ann.Statist, 8: 1160–1163.
Библиографическая ссылка Wand, M.P. and Schucany, W.R. 1990. Gaussian-based kernels. Canad.J.Statist, 18: 197–204.

Скрыть метаданые