Автор |
Foster, Peter |
Дата выпуска |
1995 |
dc.description |
Methods for obtaining kernel-based density estimators with lower bias and mean integrated squared error than an estimator based on a standard Normal kernel function are described and discussed. Three main approaches are considered which are: firstly by using 'optimal' polynomial kernels as described, for example, by Gasser er a1 (1985); secondly by employing generalised jackknifing as proposed by Jones nd Foster (1993) and thirdly by subtracting an estimator of the principal asymptotic bias term from the original estimator. The emphasis in this initial discussion is on their asymptotic properties. The finite sample performance of those that have the best asymptotic properties are compared with two adaptive estimators, as well as the fixed Normal kernel estimator, in a simulation study. |
Формат |
application.pdf |
Издатель |
Gordon and Breach Science Publishers |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Bias reduction |
Тема |
Density estimation |
Тема |
Derivatives |
Тема |
Jackknifing |
Тема |
MISE |
Тема |
Optimal kernels |
Тема |
Smoothing |
Название |
A comparative study of some bias correction techniques for kernel- based density estimators |
Тип |
research-article |
DOI |
10.1080/00949659508811628 |
Electronic ISSN |
1563-5163 |
Print ISSN |
0094-9655 |
Журнал |
Journal of Statistical Computation and Simulation |
Том |
51 |
Первая страница |
137 |
Последняя страница |
152 |
Аффилиация |
Foster, Peter; Statistical Laboratory, Department of Mathematics, The University |
Выпуск |
2-4 |
Библиографическая ссылка |
Bartlett, M.S. 1963. “Statistical estimation of density functions”. Ser.A 245–254. Sankhya. |
Библиографическая ссылка |
Bowman, A.W. 1985. A comparative study of some kernal-based nonparametric density estimators. J.Statist.Comput.Simul, 21: 313–327. |
Библиографическая ссылка |
Bowman, A.W. and Foster, P.J. 1992. Adaptive smoothing and density based tests of multivariate normality. J.Amer.Statist.Assoc, 88: 529–537. |
Библиографическая ссылка |
Foster, P.J. Kernel-based nonparametric density estimation and regression with statistical applications |
Библиографическая ссылка |
Gajek, L. 1986. On improving density estimators which are not bona fide functions. Ann.Statist, 14: 1612–1618. |
Библиографическая ссылка |
Gasser, T., Muller, H-G. and Mammitzsch, V. 1985. Kernels for nonparametric curve estimation. J.Roy.Statist.Soc, B47: 238–252. |
Библиографическая ссылка |
Hall, P. 1992. Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability density. Ann.Statist, 20: 675–694. |
Библиографическая ссылка |
Hand, D.L. 1982. “Kernel Discriminant Analysis”. Chichester: Research Studies Press. |
Библиографическая ссылка |
Jones, M.C. and Foster, P.J. 1993. Generalised jackknifing and higher order kernels. Journal of Nonparametric Statistics.Nonparametric Statistics, 3: 81–94. |
Библиографическая ссылка |
Marron, J.S. and Wand, M.P. 1992. Exact mean integrated squared error. Ann.Statist, 20: 712–736. |
Библиографическая ссылка |
Muller, H-G. and Gasser, T. 1979. “Optimal convergence properties of kernel estimators of derivatives of a density function”. In In:Smoothing techniques for curve estimation, Edited by: Gasser, T. and Rosenblatt, M. Vol. 757, Lecture Notes in Mathematics. |
Библиографическая ссылка |
Parzen, E. 1962. On estimation of a probability density function and mode. Ann.Math.Statist, 33: 1065–1076. |
Библиографическая ссылка |
Rosenblatt, M. 1956. Remarks on some nonparametric estimates of a density function. Ann.Math.Statist, 27: 832–837. |
Библиографическая ссылка |
Schucany, W.R. and Sommers, J.P. 1977. Improvement of kernel-type density estimators. J.Arne Statist.Assoc, 72: 420–423. |
Библиографическая ссылка |
Scott, D.W. 1992. “Multivariate density estimation: theory, practice and visualisation”. New York: Wiley. |
Библиографическая ссылка |
Silverman, B.W. 1986. Density estimation for statistics and data analysis, London: Chapman and Hall. |
Библиографическая ссылка |
Terrell, G.R. and Scott, D.W. 1980. On improving convergence rates for nonnegative kernal density estimators. Ann.Statist, 8: 1160–1163. |
Библиографическая ссылка |
Wand, M.P. and Schucany, W.R. 1990. Gaussian-based kernels. Canad.J.Statist, 18: 197–204. |