Автор |
Simpsona, James R. |
Автор |
Montgomery, Douglas C. |
Дата выпуска |
1996 |
dc.description |
The combined outlier-multicollinearity problem occurs frequently in regression data. Methods that successfully address this problem effectively combine biased and robust estimation techniques. A biased-robust estimator is proposed that uses a multi-stage generalized M-estimator with fully iterated ridge regression to successfully control both influence and coUinearity in regression datasets. Two previously published approaches are compared with the proposal via simulation experiments. The best performing published technique is also compared with our proposal using a dataset containing a cloud of outliers and severe multicollinearity. The proposed biased-robust method outperforms the published technique both in simulation and the example. |
Формат |
application.pdf |
Издатель |
Gordon and Breach Science Publishers |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Montecarlo simulation |
Тема |
ridge regression |
Тема |
breakdown point |
Тема |
efficiency |
Тема |
bounded influence |
Название |
A biased-robust regression technique for the combined outlier-multicollinearity problem |
Тип |
research-article |
DOI |
10.1080/00949659608811777 |
Electronic ISSN |
1563-5163 |
Print ISSN |
0094-9655 |
Журнал |
Journal of Statistical Computation and Simulation |
Том |
56 |
Первая страница |
1 |
Последняя страница |
22 |
Аффилиация |
Simpsona, James R.; Department of Mathematical Sciences, United States Air Force Academy |
Аффилиация |
Montgomery, Douglas C.; Department of Industrial and Management Systems Engineering, Arizona State University |
Выпуск |
1 |
Библиографическая ссылка |
Askin, R.G. and Montgomery, D.C. 1980. Augmented Robust Estimators. Technometrics, 22: 333–341. |
Библиографическая ссылка |
Askin, R.G. and Montgomery, D.C. 1984. An Analysis of Constrained Robust Regression Estimators. Naval Research Logistics Quarterly, 31: 283–296. |
Библиографическая ссылка |
Belsley, D.A., Kuh, E. and Welsch, R.E. 1980. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, New York: Wiley:. |
Библиографическая ссылка |
Coakley, C.W. and Hettmansperger, T.P. 1993. A Bounded Influence, High Breakdown, Efficient Regression Estimator. Journal of the American Statistical Association, 88: 872–880. |
Библиографическая ссылка |
Cook, R.D. and Hawkins, D.M. 1990. Comment on ‘Unmasking Multivariate Outliers and Leverage Points,’. Journal of the American Statistical Association, 85: 640–644. by P. J. Rousseeuw and B. C. van Zomeren |
Библиографическая ссылка |
Hampel, F.R. 1973. Robust Estimation: A Condensed Partial Survey. Zeitschrift für Wahrscheinlichkeitsthiorie und Verwandte Gebiete, 27: 87–104. |
Библиографическая ссылка |
Handshin, E., Schweppe, F., Kohlas, J. and Fiechter, A. 1975. Bad Data Analysis for Power System State Estimation. IEEE Transactions on Power Apparatus Systems, PAS-94: 329–337. |
Библиографическая ссылка |
Hawkins, D.W., Bradu, D. and Kass, G.V. 1984. Location of Several Outliers in Multiple-Regression Data Using Elemental Sets. Technometrics, 26: 197–208. |
Библиографическая ссылка |
Hettmansperger, T.P. and Sheather, S.J. 1991. A Cautionary Note on the Method of Least Median Squares. The American Statistician, 46: 79–83. |
Библиографическая ссылка |
Hoerl, A.E. and Kennard, R.W. 1970a. Ridge Regression: Biased Estimation for Non-orthogonal Problems. Technometrics, 12: 55–67. |
Библиографическая ссылка |
Hoerl, A.E. and Kennard, R.W. 1970b. Ridge Regression: Applications to Non-orthogonal Problems. Technometrics, 12: 69–82. |
Библиографическая ссылка |
Hoerl, A.E. and Kennard, R.W. 1976. Ridge Regression: Iterative Estimation of the Biasing Parameter. Communications in Statistics, A5: 77–88. |
Библиографическая ссылка |
Holland, P.W. 1973. Weighted Ridge Regression: Combining Ridge and Robust Regression Methods. NBER Working Paper Series, 11: 1–19. Working Paper |
Библиографическая ссылка |
Huber, P.J. 1977. “Robust Covariances”. In Statistical Decision Theory and Related Topics, Edited by: Gupta, . and Moore, . Vol. 2, 165–191. New York: Academic Press. |
Библиографическая ссылка |
Huber, P.J. 1981. Robust Statistics, New York: Wiley. |
Библиографическая ссылка |
Krasker, W.S. and Welsh, R.E. 1982. Efficient Bounded-Influence Regression Estimation. Journal of the American Statistical Association, 77: 595–603. |
Библиографическая ссылка |
Lawrence, K.D. and Marsh, L.C. 1984. Robust Ridge Estimation Methods for Predicting U.S. Coal Mining Fatalities. Communications in Statistics-Theory and Methods, 13: 139–149. |
Библиографическая ссылка |
Marazzi, A. 1993. Algorithms, Routines, and S Functions for Robust Statistics, Pacific Grove, California: Wadsworth and Brooks/Cole. |
Библиографическая ссылка |
Maronna, R.A. 1976. Robust M-estimators of Multivariate Location and Scatter. Annals of Statistics, 4: 51–67. |
Библиографическая ссылка |
Marquardt, D.W. 1970. Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation. Technometrics, 12: 591–612. |
Библиографическая ссылка |
Mason, R.L. and Gunst, R.F. 1985. Outlier-Induced Collinearities. Technometrics, 27: 401–407. |
Библиографическая ссылка |
Pfaffenberger, R.C. and Dielman, T.E. 1985. A Comparison of Robust Ridge Estimators. Business Economics Section Proceedings of the American Statistical Association. 1985. pp.631–635. |
Библиографическая ссылка |
Rousseeuw, P.J. 1983. “Multivariate Estimation with High Breakdown Point”. In Mathematical Statistics and Applications, Edited by: Grossman, W., Pflug, G., Vincze, I. and Wertz, W. 283–297. Netherlands: Reidel: Dordrecht. B |
Библиографическая ссылка |
Rousseeuw, P.J. 1984. Least Median of Squares Regression. Journal of the American Statistical Association, 79: 871–880. |
Библиографическая ссылка |
Rousseeuw, P.J. and Van Zomeren, B.C. 1990. Unmasking Multivariate Outliers and Leverage Points. Journal of the American Statistical Association, 85: 633–651. |
Библиографическая ссылка |
Rousseeuw, P.J. and Yohai, V.J. 1984. “Robust Regression by Means of S-Esti-mators”. In Robust and Nonlinear Time Series Analysis, Edited by: Franke, J., Hardie, W. and Martin, D. 256–272. Heidelberg, , Germany: Springer-Verlag. |
Библиографическая ссылка |
S-Plus, . 1994. S-PLUS Reference Manual, Seattle: Statistical Sciences. |
Библиографическая ссылка |
Simonoff, J.S. 1991. “General Approaches to Stepwise Identification of Unusual Values in Data Analysis”. In Directions in Robust Statistics and Diagnostics, Edited by: Stahel, W. and Weisberg, S. 223–242. Heidelberg, , Germany: Springer-Verlag:. Part II |
Библиографическая ссылка |
Simpson, D.G., Ruppert, D. and Carroll, R.J. 1992. On One-Step GM Estimates and Stability of Influences in Linear Regression. Journal of the American Statistical Association, 87: 439–450. |
Библиографическая ссылка |
Stahel, W.A. 1981. Breakdown of Covariance Estimators, Zurich: ETH. Research Report 3.1, Fachgruppe fÜr Statistik, |
Библиографическая ссылка |
Walker, E. 1984. Influence, Collinearity, and Robust Estimation in Regression, Virginia Polytechnic Institute.. unpublished Ph.D. dissertation, Department of Statistics |
Библиографическая ссылка |
Walker, E. and Birch, J.B. 1988. Influence Measures in Ridge Regression. Technometrics, 30: 221–227. |