Автор |
winkler, W. |
Автор |
Franz, J. |
Автор |
Küchler, I. |
Дата выпуска |
1982 |
dc.description |
In this survey paper sequential statistical procedures for the exponential class of processes with independent increments are considered. After the definition of the exponential class a characterization in terms of the LEVY-CHXNTCBXN.representation is given. Then, sequential estimation problems* and sequential testing of hypotheses with respect to the underlying parameter are studied. Finally, some possible extensions of the considered notions and methods to other classes of processes are indicated. |
Формат |
application.pdf |
Издатель |
Akademie-Verlag |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Processes with independent increments LEVY-CHINTCHIN reriresentfltion sufficient statistic |
Тема |
sequential likelihood principle |
Тема |
moment relations |
Тема |
WALD's fundamental identity |
Тема |
sequential probability ratio test (SPRT) |
Тема |
sequential estimation |
Тема |
CBAMÉR-RAO-type inequality |
Тема |
efficiency |
Тема |
consistency |
Название |
Sequential statistical procedures for processes of the exponential class with independent increments |
Тип |
research-article |
DOI |
10.1080/02331888208801633 |
Print ISSN |
0323-3944 |
Журнал |
Series Statistics |
Том |
13 |
Первая страница |
105 |
Последняя страница |
119 |
Аффилиация |
winkler, W.; Sektion Mathematik, TU Dresden |
Аффилиация |
Franz, J.; Sektion Mathematik, TU Dresden |
Аффилиация |
Küchler, I.; Sektion Mathematik, TU Dresden |
Выпуск |
1 |
Библиографическая ссылка |
Anderson, T.W. 1960. A modification of the sequential probability ratio test to reduce the sample size. Ann. Math. Statist, 31: 165–197. |
Библиографическая ссылка |
Chow, Y.S. and Bobbins, H. 1965. On the asymptotic theory of fixed-width sequential confidence intervals for the mean. Ann. Math. Statist, 36: 789–799. |
Библиографическая ссылка |
Sun Bai, Do. 1975. Efficient estimation of transition probabilities in a Markov chain. Ann. Statist, 3: 1305–1317. |
Библиографическая ссылка |
De Groot, M.H. 1959. Unbiased sequential estimation for binomial populations. Ann. Math. Statist, 30: 60–101. |
Библиографическая ссылка |
Dvoretzky, A., Kiefer, J. and Wolfowitz, J. 1953. Sequential decision processes with continuous time parameter:testing hypothesis. Ann. Math. Statist, 24: 254–264. |
Библиографическая ссылка |
Eisenberg, B., Ghosh, B.K. and Simons, G. 1976. Properties of generalized sequential probability ratio tests. Ann. Statist, 4: 237–251. |
Библиографическая ссылка |
Franz, J. 1974. “Sequentially Verfahren der Parameterschätzung bei homogenen Prozessen mit unäbhangigen Zuwächsen”. In Dissertation, Techn. Universität Dresden. Sektion Mathematik |
Библиографическая ссылка |
Franz, J. 1977. Niveaudurchgangszeiten zur Charakterisierung sequentieller Schätzverfahren. Math.Operationsforsch. Statist., Ser. Statistics, 8: 499–510. |
Библиографическая ссылка |
Franz, J. 1979. Consistency and completeness in sequential estimation problems. Math. Operationsforsch. Statist., Ser. Statistics, 10: 127–139. |
Библиографическая ссылка |
Franz, J. and Magiera, R. 1978. On sequential plans for the exponential class of processes. Zastosowania Matematyki, 16: 153–165. |
Библиографическая ссылка |
Franz, J. and Winkler, W. 1976. Über Stoppzeiten bei statistischen Problemen für homogene Prozesse mit unabhängigen Zuwachsen. Math. Nachrichten, 70: 37–53. |
Библиографическая ссылка |
Fernz, J. and Winkler, W. 1979. Sequential estimation problems for the exponential class of processes with independent increments. Scand. J. Statist, 6: 129–139. |
Библиографическая ссылка |
Ghosh, B.K. 1970. Sequential Tests of Statistical Hypotheses, Reading, Massachusetts: Addison-Wesiey. |
Библиографическая ссылка |
Girshik, M.A., Mosteller, F. and Savage, L.J. 1946. Unbiased estimates for certain binomial sampling problems with applications. Ann. Math. Statist, 17: 13–23. |
Библиографическая ссылка |
Hall, W.J. 1970. On Wald's equations in continuous time. J. Appl. Prob, 7: 59–68. |
Библиографическая ссылка |
Kiefer, J. and Weiss, L. 1957. Some properties of generalized sequential probability ratio tests. Ann. Math. Statist, 28: 57–74. |
Библиографическая ссылка |
Kiefer, J. and Wolfowitz, J. 1956. Sequential tests of hypotheses about mean occurrence time of a continuous parameter Poisson process. Naval Res. Logis. Quart, 3: 205–219. |
Библиографическая ссылка |
Küchler, I. 1978. “Über den Sequentiellen Likelihoodquotiententest bei einer Klasse von zeitstetigen Prozessen mit unabhängigen Zuwächsen und bei endlichen Markov-schen Ketten”. In Dissertation Dresden, TU |
Библиографическая ссылка |
Küchler, I. 1978. Der Sequentielle Quotiententest bei irreduziblen homogenen Markovschen Ketten mit endlichem Zustandsraum. Math. Operationsforsch. Statist., Ser. Statistics, 9: 227–239. |
Библиографическая ссылка |
Küchler, U. and Küchler, U. 1981. Analytical aspects of exponential families of distribution functions. Math. Nachrichten, 101: 153–164. |
Библиографическая ссылка |
Küchler, I. and Semjonov, A. 1979. Die Waldsche Fundamentalidentität und ein Sequentieller Quotiententest für eine zufällige Irrfahrt über einer homogenen irredu-ziblen Markovschen Kette mit endlichem Zustandsraum. Math. Operations for sch. Statist., Ser. Statistics, 10: 319–331. |
Библиографическая ссылка |
Magiera, R. 1974. On the inequality of Cramér-Rao type in sequential estimation theory. Zastosowania Matematyki Applicationes Mathematicae, 14: 225–235. |
Библиографическая ссылка |
Magiera, R. 1975. Sequential plans for the negative-binomial process Prace Naukowe Institutu Matematyki. Studa Materialy, 10: 3–15. Politechniki Wroclawskiej 11 |
Библиографическая ссылка |
Magiera, R. and Trybula, S. 1976. Plany ukośne dla procesu dwurnianowego. Roczniki polskiego tawarzyst, Matematyczego seria III. Matematyka stosowania, 6: 41–47. |
Библиографическая ссылка |
Phatarford, R.M. 1965. Sequential analysis of dependent observations I. Biometrika, 52: 157–162. |
Библиографическая ссылка |
Root, D.H. 1969. The existence of certain stopping times on Brownian motion. Ann. Math. Statist, 40: 715–718. |
Библиографическая ссылка |
Schmitz, N. 1968. Likelihoodquotienten-Sequenztest bei homogenen MarkovschenKetten. Biometrische Z, 10: 231–247. |
Библиографическая ссылка |
Širjajev, A.N. 1976. Statistiĉeskij Posledovatelny Analyz, Moskva: Nauka. |
Библиографическая ссылка |
Skryabin, D.D. 1973. On efficient sequential estimation Vest, Vol. 7, 50–56. Leningrad Univ. Russian |
Библиографическая ссылка |
Sudakov, V.N. 1969. On measures defined by Markov stopping times Zap. Nauču.Sem. Leningrad. Otdel. Mat. Inst. Steklov, 12: 157–16. Russian |
Библиографическая ссылка |
Trvbula, S. 1968. Sequential estimation in processes with independent increments. Dissertationes Mathematice, 60 |
Библиографическая ссылка |
Trvbula, S. 1977. Sequential estimation in finite state Markov processes. Komuni- katy politechnika Wroctawska, 120 |
Библиографическая ссылка |
Wald, A. 1947. Sequential Analysis, New York: Wiley. |
Библиографическая ссылка |
Wald, A. and Wolfowitz, J. 1948. Optimum character of the sequential probability ratio test. Ann. Math. Statist, 19: 326–339. |
Библиографическая ссылка |
Wolfowitz, J. 1947. The efficiency of sequential estimations and Wald's equation for sequential processes. Ann. Math. Statist, 18: 215–230. |
Библиографическая ссылка |
Zaidman, R.A., Linnik, Y.V. and Sudakov, V.N. 1969. Sequential estimation plans and Markov stopping times. Dokl. Akad. Nauk SSSR, 185 in Russian |