Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Nesse, P.
Автор Grava, J.
Автор Bloom, P.R.
Дата выпуска 1988
dc.description AbstractPhosphorus was extracted from 30 alkaline soils from western Minnesota using the Olsen NaHCO<sub>3</sub>, the Soltanpour AB‐DTPA, Mehlich 2, Mehlich 3, Bray‐1, and resin methods. Values from the first six methods were compared to resin extractable phosphorus.The NaHCO<sub>3</sub>‐P values for 30 soils were most closely related to resin extractable‐P values with r ‐ 0.943, followed by the AB‐DTPA with r ‐ 0.889, and Mehlich 3 with r ‐ 0.809. Bray‐1 values from three different soil‐to‐solution ratios were less closely related to resin P. The correlation coefficient between Olsen NaHCO<sub>3</sub>‐P and Bray‐1 was r ‐ 0.693 for all 30 soils.Soils were divided on the basis of their reaction to dropwise addition of 10% HC1. Violently effervescent samples (n‐15), with one exception, were found to be those soils in the study group with calcium carbonate equivalent (CCE) ranging from 7 to 62 percent. Non‐violently effervescing soils (n‐15) were found to have CCE of less than 7 percent. The elimination of the violently effervescing, high CCE soils from the study group resulted in r values greater than 0.9 for all methods when compared to resin P. Improvement in the relationships between the acid extractants (Bray‐1 and Mehlich 2 and 3) with resin P was attributed to elimination of high CCE soils. Improvement in the relationship between AB‐DTPA and resin P was attributed to the removal of high clay soils that, by chance, also contained high CCE. Olsen NaHCO<sub>3</sub> and Bray‐1 (1:10 soil‐to‐solution ratio) values were closely related (r‐0.973) for the non‐violently effervescing (low CCE) soils.Only the NaHCO<sub>3</sub> values were closely related to resin P for the 15 high calcium carbonate soils, although AB‐DTPA values were closely related to resin P when the high clay (> 35%) soils were removed.
Формат application.pdf
Издатель Taylor & Francis Group
Копирайт Copyright Taylor and Francis Group, LLC
Тема Phosphorus soil tests
Тема alkaline soils
Название Correlation of several tests for phosphorus with resin extractable phosphorus for 30 alkaline soils
Тип research-article
DOI 10.1080/00103628809367967
Electronic ISSN 1532-2416
Print ISSN 0010-3624
Журнал Communications in Soil Science and Plant Analysis
Том 19
Первая страница 675
Последняя страница 689
Аффилиация Nesse, P.; Department of Soil Science, University of Minnesota
Аффилиация Grava, J.; Department of Soil Science, University of Minnesota
Аффилиация Bloom, P.R.; Department of Soil Science, University of Minnesota
Выпуск 6
Библиографическая ссылка Randall, G.W. and Grava, J. 1971. Effect of soil: Bray No. 1 ratios on the amount of phosphorus extracted from calcareous Minnesota soils. Soil Sci. Soc. Amer. Proc., 35: 112–114.
Библиографическая ссылка Blanchar, R.W. and Caldwell, A.C. 1964. Phosphorus uptake by plants and readily extractable phosphorus in soils. Agron. J., 56: 218–221.
Библиографическая ссылка Bowman, R.A., Olsen, S.R. and Watanabe, F.S. 1978. Greenhouse evaluation of residual phosphate by four phosphorus methods in neutral and calcareous soils. Soil Sci. Soc. Amer. J., 42: 451–454.
Библиографическая ссылка Soltanpour, P.N. and Schwab, A.P. 1977. A new soil test for simultaneous extraction of macro and micro nutrients in alkaline soils. Comm. in Soil Sci. and Plant Anal., 8: 195–207.
Библиографическая ссылка Mehlich, A. 1978. New extractant for soil test evaluation of phosphorus, potassium, magnesium, calcium, sodium, manganese, and zinc. Comm. Soil Sci. Plant Anal., 9: 477–492.
Библиографическая ссылка Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Comm. in Soil Sci. Plant Anal., 15: 1409–1416.
Библиографическая ссылка Hanlon, E.A. and Johnson, G.V. 1984. Bray/Kurtz, Mehlich 3, AB‐DTPA, and ammonium acetate extractions of P, K, and Mg in four Oklahoma soils. Comm. in Soil Sci. Plant Anal., 15: 277–294.
Библиографическая ссылка Amer, F., Bouldin, D.R., Black, C.A. and Duke, F.R. 1955. Characterization of soil phosphorus b. anion exchange resin adsorption and P<sup>32</sup> equilibration. Plant Soil, 6: 391–408.
Библиографическая ссылка Olsen, S.R. and Khasawneh, F.E. 1980. “Use and limitations of physico‐chemical criteria for assessing the status of phosphorus in soils”. In The Role of Phosphorus in Agriculture, 361–410. Madison, WI: Am. Soc. of Agron..
Библиографическая ссылка Sharpley, A.N., Jones, C.A., Gray, Carl and Cole, C.V. 1984. A simplified soil and plant phosphorus model: II. Prediction of labile, organic, and sorbed phosphorus. Soil Sci. Soc. Amer. J., 48: 805–809.
Библиографическая ссылка Cooke, I.J. and Hislop, J. 1963. Use of anion exchange resin for the assessment of available phosphate. Soil Sci., 96: 308–312.
Библиографическая ссылка Sibbesen, E. 1983. Phosphate soil tests and their suitability to assess the phosphate status of soil. J. Sci. Food Agric., 34: 1368–1374.
Библиографическая ссылка Debolt, D.C. 1974. A high sample volume procedure for the colorimetric determination of soil organic matter. Comm. Soil Sci. Plant. Anal., 5: 131–137.
Библиографическая ссылка Schulte, E.E. 1980. “Recommended soil organic matter tests”. In Recommended chemical soil test procedures for the North Central region, Edited by: Dahnke, W.C. 28–31. Fargo, ND: N.D. Agric. Exp. Stn..
Библиографическая ссылка Day, P.R. 1965. “Particle fractionation and particle size analysis”. In Methods of Soil Analysis, Edited by: Black, C.A. 545–566. Madison, WI: Amer. Soc. Agron.. Part I
Библиографическая ссылка Bloom, P.R., Meter, K. and Crum, J.R. 1985. Titration method for determination of clay‐sized carbonates. Soil Sci. Soc. Amer. J., 49: 1070–1073.
Библиографическая ссылка Peech, M. 1965. “Hydrogen‐ion activity”. In Methods of Soil Analysis, Edited by: Black, C.A. 914–925. Madison, WI: Amer. Soc. Agron.. Part II
Библиографическая ссылка Racz, G.J. and Soper, R.J. 1967. Reaction products of orthophosphates in soils containing varying amounts of calcium and magnesium. Can. J. Soil Sci., 47: 223–230.
Библиографическая ссылка Bauer, H.P., Beckett, P.H.T. and Bie, S.W. 1972. A rapid gravimetric method for estimating calcium carbonate in soils. Plant Soil, 37: 689–690.
Библиографическая ссылка Soil Survey Staff. 1974. Definitions and abbreviations for soil descriptions, Portland, OR: USDA‐SCS. West Tech. Serv. Center.
Библиографическая ссылка Bray, R.N. and Kurtz, L.T. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci., 59: 39–45.
Библиографическая ссылка Knudsen, D. 1980. “Recommended phosphorus tests”. In Recommended chemical soil test procedures for the North Central region, Edited by: Dahnke, W.C. 14–16. Fargo, ND: N.D. Agric. Exp. Stn..
Библиографическая ссылка Olsen, S.R., Cole, C.V., Watanabe, F.S. and Dean, L.A. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate, USDA. Circular 939
Библиографическая ссылка Stewart, J.W.B. 1984. Personal correspondence. Professor, Institute of Pedology, Univ. of Saskatchewan.
Библиографическая ссылка Sibbesen, E. 1977. A simple ion‐exchange resin procedure for extracting plant‐available elements from soil. Plant and Soil, 46: 665–669.
Библиографическая ссылка Olsen, S.R., Watanabe, F.S. and Bowman, R.A. 1983. Evaluation of fertilizer phosphate residues by plant uptake and extractable phosphorus. Soil Sci. Soc. Amer. J., 47: 952–958.
Библиографическая ссылка Soltanpour, P.N. 1985. Personal correspondence. Professor, Colorado State Univ.
Библиографическая ссылка Rehm, G.W., Rosen, C.J., Moncrief, J.F., Fenster, W.E. and Grava, J. 1985. Guide to computer programmed soil test recommendations for field crops in Minnesota, St. Paul, MN: Agr. Ext. Serv., Univ. of Minnesota.

Скрыть метаданые