Автор |
Nesse, P. |
Автор |
Grava, J. |
Автор |
Bloom, P.R. |
Дата выпуска |
1988 |
dc.description |
AbstractPhosphorus was extracted from 30 alkaline soils from western Minnesota using the Olsen NaHCO<sub>3</sub>, the Soltanpour AB‐DTPA, Mehlich 2, Mehlich 3, Bray‐1, and resin methods. Values from the first six methods were compared to resin extractable phosphorus.The NaHCO<sub>3</sub>‐P values for 30 soils were most closely related to resin extractable‐P values with r ‐ 0.943, followed by the AB‐DTPA with r ‐ 0.889, and Mehlich 3 with r ‐ 0.809. Bray‐1 values from three different soil‐to‐solution ratios were less closely related to resin P. The correlation coefficient between Olsen NaHCO<sub>3</sub>‐P and Bray‐1 was r ‐ 0.693 for all 30 soils.Soils were divided on the basis of their reaction to dropwise addition of 10% HC1. Violently effervescent samples (n‐15), with one exception, were found to be those soils in the study group with calcium carbonate equivalent (CCE) ranging from 7 to 62 percent. Non‐violently effervescing soils (n‐15) were found to have CCE of less than 7 percent. The elimination of the violently effervescing, high CCE soils from the study group resulted in r values greater than 0.9 for all methods when compared to resin P. Improvement in the relationships between the acid extractants (Bray‐1 and Mehlich 2 and 3) with resin P was attributed to elimination of high CCE soils. Improvement in the relationship between AB‐DTPA and resin P was attributed to the removal of high clay soils that, by chance, also contained high CCE. Olsen NaHCO<sub>3</sub> and Bray‐1 (1:10 soil‐to‐solution ratio) values were closely related (r‐0.973) for the non‐violently effervescing (low CCE) soils.Only the NaHCO<sub>3</sub> values were closely related to resin P for the 15 high calcium carbonate soils, although AB‐DTPA values were closely related to resin P when the high clay (> 35%) soils were removed. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Phosphorus soil tests |
Тема |
alkaline soils |
Название |
Correlation of several tests for phosphorus with resin extractable phosphorus for 30 alkaline soils |
Тип |
research-article |
DOI |
10.1080/00103628809367967 |
Electronic ISSN |
1532-2416 |
Print ISSN |
0010-3624 |
Журнал |
Communications in Soil Science and Plant Analysis |
Том |
19 |
Первая страница |
675 |
Последняя страница |
689 |
Аффилиация |
Nesse, P.; Department of Soil Science, University of Minnesota |
Аффилиация |
Grava, J.; Department of Soil Science, University of Minnesota |
Аффилиация |
Bloom, P.R.; Department of Soil Science, University of Minnesota |
Выпуск |
6 |
Библиографическая ссылка |
Randall, G.W. and Grava, J. 1971. Effect of soil: Bray No. 1 ratios on the amount of phosphorus extracted from calcareous Minnesota soils. Soil Sci. Soc. Amer. Proc., 35: 112–114. |
Библиографическая ссылка |
Blanchar, R.W. and Caldwell, A.C. 1964. Phosphorus uptake by plants and readily extractable phosphorus in soils. Agron. J., 56: 218–221. |
Библиографическая ссылка |
Bowman, R.A., Olsen, S.R. and Watanabe, F.S. 1978. Greenhouse evaluation of residual phosphate by four phosphorus methods in neutral and calcareous soils. Soil Sci. Soc. Amer. J., 42: 451–454. |
Библиографическая ссылка |
Soltanpour, P.N. and Schwab, A.P. 1977. A new soil test for simultaneous extraction of macro and micro nutrients in alkaline soils. Comm. in Soil Sci. and Plant Anal., 8: 195–207. |
Библиографическая ссылка |
Mehlich, A. 1978. New extractant for soil test evaluation of phosphorus, potassium, magnesium, calcium, sodium, manganese, and zinc. Comm. Soil Sci. Plant Anal., 9: 477–492. |
Библиографическая ссылка |
Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Comm. in Soil Sci. Plant Anal., 15: 1409–1416. |
Библиографическая ссылка |
Hanlon, E.A. and Johnson, G.V. 1984. Bray/Kurtz, Mehlich 3, AB‐DTPA, and ammonium acetate extractions of P, K, and Mg in four Oklahoma soils. Comm. in Soil Sci. Plant Anal., 15: 277–294. |
Библиографическая ссылка |
Amer, F., Bouldin, D.R., Black, C.A. and Duke, F.R. 1955. Characterization of soil phosphorus b. anion exchange resin adsorption and P<sup>32</sup> equilibration. Plant Soil, 6: 391–408. |
Библиографическая ссылка |
Olsen, S.R. and Khasawneh, F.E. 1980. “Use and limitations of physico‐chemical criteria for assessing the status of phosphorus in soils”. In The Role of Phosphorus in Agriculture, 361–410. Madison, WI: Am. Soc. of Agron.. |
Библиографическая ссылка |
Sharpley, A.N., Jones, C.A., Gray, Carl and Cole, C.V. 1984. A simplified soil and plant phosphorus model: II. Prediction of labile, organic, and sorbed phosphorus. Soil Sci. Soc. Amer. J., 48: 805–809. |
Библиографическая ссылка |
Cooke, I.J. and Hislop, J. 1963. Use of anion exchange resin for the assessment of available phosphate. Soil Sci., 96: 308–312. |
Библиографическая ссылка |
Sibbesen, E. 1983. Phosphate soil tests and their suitability to assess the phosphate status of soil. J. Sci. Food Agric., 34: 1368–1374. |
Библиографическая ссылка |
Debolt, D.C. 1974. A high sample volume procedure for the colorimetric determination of soil organic matter. Comm. Soil Sci. Plant. Anal., 5: 131–137. |
Библиографическая ссылка |
Schulte, E.E. 1980. “Recommended soil organic matter tests”. In Recommended chemical soil test procedures for the North Central region, Edited by: Dahnke, W.C. 28–31. Fargo, ND: N.D. Agric. Exp. Stn.. |
Библиографическая ссылка |
Day, P.R. 1965. “Particle fractionation and particle size analysis”. In Methods of Soil Analysis, Edited by: Black, C.A. 545–566. Madison, WI: Amer. Soc. Agron.. Part I |
Библиографическая ссылка |
Bloom, P.R., Meter, K. and Crum, J.R. 1985. Titration method for determination of clay‐sized carbonates. Soil Sci. Soc. Amer. J., 49: 1070–1073. |
Библиографическая ссылка |
Peech, M. 1965. “Hydrogen‐ion activity”. In Methods of Soil Analysis, Edited by: Black, C.A. 914–925. Madison, WI: Amer. Soc. Agron.. Part II |
Библиографическая ссылка |
Racz, G.J. and Soper, R.J. 1967. Reaction products of orthophosphates in soils containing varying amounts of calcium and magnesium. Can. J. Soil Sci., 47: 223–230. |
Библиографическая ссылка |
Bauer, H.P., Beckett, P.H.T. and Bie, S.W. 1972. A rapid gravimetric method for estimating calcium carbonate in soils. Plant Soil, 37: 689–690. |
Библиографическая ссылка |
Soil Survey Staff. 1974. Definitions and abbreviations for soil descriptions, Portland, OR: USDA‐SCS. West Tech. Serv. Center. |
Библиографическая ссылка |
Bray, R.N. and Kurtz, L.T. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci., 59: 39–45. |
Библиографическая ссылка |
Knudsen, D. 1980. “Recommended phosphorus tests”. In Recommended chemical soil test procedures for the North Central region, Edited by: Dahnke, W.C. 14–16. Fargo, ND: N.D. Agric. Exp. Stn.. |
Библиографическая ссылка |
Olsen, S.R., Cole, C.V., Watanabe, F.S. and Dean, L.A. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate, USDA. Circular 939 |
Библиографическая ссылка |
Stewart, J.W.B. 1984. Personal correspondence. Professor, Institute of Pedology, Univ. of Saskatchewan. |
Библиографическая ссылка |
Sibbesen, E. 1977. A simple ion‐exchange resin procedure for extracting plant‐available elements from soil. Plant and Soil, 46: 665–669. |
Библиографическая ссылка |
Olsen, S.R., Watanabe, F.S. and Bowman, R.A. 1983. Evaluation of fertilizer phosphate residues by plant uptake and extractable phosphorus. Soil Sci. Soc. Amer. J., 47: 952–958. |
Библиографическая ссылка |
Soltanpour, P.N. 1985. Personal correspondence. Professor, Colorado State Univ. |
Библиографическая ссылка |
Rehm, G.W., Rosen, C.J., Moncrief, J.F., Fenster, W.E. and Grava, J. 1985. Guide to computer programmed soil test recommendations for field crops in Minnesota, St. Paul, MN: Agr. Ext. Serv., Univ. of Minnesota. |