Автор |
Mills, Jeffrey A. |
Автор |
Prasad, Kislaya |
Дата выпуска |
1992 |
dc.description |
There has been significant new work published recently on the subject of model selection. Notably Rissanen (1986, 1987, 1988) has introduced new criteria based on the notion of stochastic complexity and Hurvich and Tsai(1989) have introduced a bias corrected version of Akaike's information criterion. In this paper, a Monte Carlo study is conducted to evaluate the relative performance of these new model selection criteria against the commonly used alternatives. In addition, we compare the performance of all the criteria in a number of situations not considered in earlier studies: robustness to distributional assumptions, collinearity among regressors, and non-stationarity in a time series. The evaluation is based on the number of times the correct model is chosen and the out of sample prediction error. The results of this study suggest that Rissanen's criteria are sensitive to the assumptions and choices that need to made in their application, and so are sometimes unreliable. While many of the criteria often perform satisfactorily, across experiments the Schwartz Bayesian Information Criterion (and the related Bayesian Estimation Criterion of Geweke-Meese) seem to consistently outperfom the other alternatives considered. |
Формат |
application.pdf |
Издатель |
Marcel Dekker, Inc. |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Model selection criteria |
Тема |
Monte Carlo study |
Тема |
C51 |
Тема |
C52 |
Название |
A comparison of model selection criteria |
Тип |
research-article |
DOI |
10.1080/07474939208800232 |
Electronic ISSN |
1532-4168 |
Print ISSN |
0747-4938 |
Журнал |
Econometric Reviews |
Том |
11 |
Первая страница |
201 |
Последняя страница |
234 |
Аффилиация |
Mills, Jeffrey A.; Florida State University, Department of Economics |
Аффилиация |
Prasad, Kislaya; Florida State University, Department of Economics |
Выпуск |
2 |
Библиографическая ссылка |
Akaike, H. 1974. A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19: 716–723. |
Библиографическая ссылка |
Akaike, H. 1981. Likelihood of a Model and Information Criteria. Journal of Econometrics, 16: 3–14. |
Библиографическая ссылка |
Chow, G. C. 1983. Econometrics, New York: McGraw-Hill. |
Библиографическая ссылка |
Geweke, J. and Meese, R. 1981. Estimating Regression Models of Finite but Unknown Order. International Economic Review, 22: 55–70. |
Библиографическая ссылка |
Hannan, E. J. and Quinn, B. G. 1979. The Determination of the Order of an Autoregression. Journal of the Royal Statistical Society, 41: 190–195. Series B |
Библиографическая ссылка |
Hannan, E. J., McDougall, A. J. and Poskitt, D. S. 1989. Recursive Estimation of Autoregressions. Journal of the Royal Statistical Society, 51: 217–233. Series B |
Библиографическая ссылка |
Hemerly, E. M. and Davis, M. H. A. 1989. Strong Consistency of the PLS Criterion for Order Determination of Autoregressive Processes. Annals of Statistics, 17: 941–946. Series B |
Библиографическая ссылка |
Hendry, D. F. and Richard, J. F. 1989. “Recent Developments in the Theory of Encompassing ”. In Contributions to Operations Research and Economics: The XXth Anniversary of CORE, Cambridge, Mass: MIT Press. |
Библиографическая ссылка |
Hendry, D. F. 1983. Comment. Econometric Reviews, 2: 111–114. |
Библиографическая ссылка |
Holmes, J. M. and Hutton, P. A. 1989. 'Optimal' Model Selection When the True Relationship is Weak and Occurs with a Delay. Economics Letters, 30: 333–339. |
Библиографическая ссылка |
Hurvich, C. M. and Tsai, C. L. 1989. Regression and Time Series Model Specification in Small Samples. Biometrika, 76: 297–307. |
Библиографическая ссылка |
Judge, G. G., Griffiths, W. E., Carter Hill, R., Lütkepohl, H. and Lee, T. C. 1985. The Theory and Practice of Econometrics, New York: John Wiley & Sons. |
Библиографическая ссылка |
Koehler, A. B. and Murphree, E. S. 1988. A Comparison of the Akaike and Schwartz Criteria for Selecting Model Order. Applied Statistics, 37: 187–195. |
Библиографическая ссылка |
Lütkepohl, H. 1985. Comparison of Criteria For Estimating the Order of a Vector Autoregressive Process . Journal of Time Series Analysis, 6: 35–52. |
Библиографическая ссылка |
Pagan, A. 1989. On the Role of Simulation in the Statistical Evaluation of Econometric Models. Journal of Econometrics, 40: 125–139. |
Библиографическая ссылка |
Quinn, B. G. 1980. Order Determination for a Multivariate Autoregression. Journal of the Royal Statistical Society, 42: 182–185. Series B |
Библиографическая ссылка |
Rissanen, J. 1978. Modeling by Shortest Data Description. Automatica, 14: 465–471. |
Библиографическая ссылка |
Rissanen, J. 1983. A Universal Prior for Integers and Estimation by Minimum Description Length. The Annals of Statistics, 11: 416–431. |
Библиографическая ссылка |
Rissanen, J. 1986. Stochastic Complexity and Modeling. The Annals of Statistics, 14: 1080–1100. |
Библиографическая ссылка |
Rissanen, J. 1987. Stochastic Complexity. Journal of the Royal Statistical Society , 49 Series B, 223-239 and 252-265, With Discussion |
Библиографическая ссылка |
Rissanen, J. 1988. Stochastic Complexity and the MDL Principle. Econometric Reviews, 49: 85–102. |
Библиографическая ссылка |
Schwartz, G. 1978. Estimating the Dimension of a Model. Annals of Statistics, 6: 461–464. |
Библиографическая ссылка |
Sims, C. A. 1988. Bayesian Skepticism on Unit Root Econometrics. Journal of Economic Dynamics and Control, 12: 463–474. |
Библиографическая ссылка |
Theil, H. 1961. Economic Forecasts and Policy, North-Holland. |