Автор |
Maasoumi <sup>1</sup> , Esfandiar |
Дата выпуска |
1993 |
dc.description |
An extensive synthesis is provided of the concepts, measures and techniques of Information Theory (IT). After an axiomatic description of the basic definitions of “information functions”, “entropy” or uncertainty and the maximum entropy principle, the paper demonstrates the power of IT as both an interpretive and techinically productive tool. It is argued that this power and universality is promarily due to the common need for (i) measures of distance and discrimination and, (ii) appropriate partitioning- aggregation properties. IT offers a very suggestive unification for a bewildering and arbitrary set of approaches that have evolved in different disciplines.Applications are discussed or indicated. These applications have relevance to economics, finance, industrial organization, marketing, statistical ingerence and model selection, political science and communication. A main focus of the discussion is the generative power of IT measures in statistical examinations of unknown distributions and random phenomena. Measures of concentration and inequality, aggregation functions and index numbers, tests of nested and non_nested hypotheses, and measures of volatility, movility and divergence are presented. Extending the author's previous work, estimation of unknown regression functions, densities and score functions is examined based on the maximum entropy principle. Some empirical examples are cited. |
Формат |
application.pdf |
Издатель |
Marcel Dekker, Inc. |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Information theory |
Тема |
entropy |
Тема |
inequality |
Тема |
tests |
Тема |
adaptive estimation |
Тема |
MLE |
Тема |
distance functions |
Тема |
uncertainty |
Тема |
aggregation |
Тема |
nonparametrics |
Название |
A compendium to information theory in economics and econometrics |
Тип |
research-article |
DOI |
10.1080/07474939308800260 |
Electronic ISSN |
1532-4168 |
Print ISSN |
0747-4938 |
Журнал |
Econometric Reviews |
Том |
12 |
Первая страница |
137 |
Последняя страница |
181 |
Аффилиация |
Maasoumi <sup>1</sup> , Esfandiar; Department of Economics, SMU |
Выпуск |
2 |
Библиографическая ссылка |
Aczel, J. and Daroczy, Z. 1975. On Measures of Information and Their Characterizations, New York: Academic Press. |
Библиографическая ссылка |
Akaike, H. Information theory and an extension of the maximum likelihood principle. Proc. of the second international symposium on information theory. Edited by: Petrov, B. N. and Csaki, F. pp.267–281. Budapest: Akademial Kiado. |
Библиографическая ссылка |
Akaike, H. 1977. “On entropy maximization principle”. In Applications of Statistics, Edited by: Krishnaiah. 27–41. North-Holland. |
Библиографическая ссылка |
Amemiya, T. 1980. Selection of regressors. International Econoic Review, 21: 331–354. |
Библиографическая ссылка |
Andrews , D. and Whang, Y.-J. 1990. Additive interactive regression models: Circumvention of the curse of dimensionality. Econometric Theory, 6: 466–479. |
Библиографическая ссылка |
Atkinson, A. B. 1970. On the measurement of inequality. Journal of Economic Theory, 2: 244–263. |
Библиографическая ссылка |
Atkinson, C. and Mitchell, A.F.S. 1981. Rao's distance measure, 3: 345–365. Sankhya,43,series A, |
Библиографическая ссылка |
Begun, J., Huang, W. and Wellner, J. 1983. Information and asymptotic efficiency in parametric-nonparametric models. Annals of Statistics, 11: 432–452. |
Библиографическая ссылка |
Bhattacharyya, A. 1943. On a measure of divergence between two statistical populations defined by their probability distributions. Bill.Calcutta Math. Soc., 35: 99–109. |
Библиографическая ссылка |
Bhattacharyya, A. 1946. On a measure of divergence between two Multinomial populations. Sankhya, 7: 401–406. |
Библиографическая ссылка |
Bickel, P. J. 1982. The Walk Memorial lectures: On adaptive estimation, 10: 647–671. |
Библиографическая ссылка |
Burbea , J. and Rao, C. R. 1982. Entropy differential metric, distance and divergence measures in probability spaces: A unified approach. Journal of Multivariate Analysis, 10: 575–596. |
Библиографическая ссылка |
Chamberlain, G. 1987. Asymptotic efficiency in estimation with conditional moment restrictions. Journal of Econometrics, 34: 305–334. |
Библиографическая ссылка |
Chamberlain, G. 1992. Efficiency bounds for semiparametric regression. Econometrics, 60: 567–596. 3 |
Библиографическая ссылка |
Cover, T. M. and Thomas , J. A. 1991. Elements of information theory, Wiley. |
Библиографическая ссылка |
Csiszar, I. 1991. Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems . Annals of Statistics, 19(4): 2032–2066. |
Библиографическая ссылка |
Davis, H. T. 1941. The theory of econometrics, Bloomington, IN: The Principia Press. |
Библиографическая ссылка |
Foster, J. E. 1983. An Axiomatic Characterization of the Theil Measure of Income Inequality. Journal of Economic Theory, 31(1): 105–121. |
Библиографическая ссылка |
George, E. I. and McCulloch, R. November 1989. On obtaining invariant prior distributions, November, Graduate school of business, Univ. of Chicago. |
Библиографическая ссылка |
Georgescu-Roegen, N. 1966. Analytical Economics: Issues and Problems, Boston: Harvard University Press. |
Библиографическая ссылка |
Georgescu-Roegen, N. 1971. The Entropy Law and the Economic Process, Cambridge, MA: Harvard University Press. |
Библиографическая ссылка |
Good, I. J. 1963. Maximum entropy for hypothesis formulation, espesially for multidimentional contingency tables. Annals of Mathematical Statistics, 34: 911–934. |
Библиографическая ссылка |
Hartley, R.V.L. 1928. Transmission of information. Bell System Tech. Journal, 7 535 |
Библиографическая ссылка |
Havrda, J. and Charvat, F. 1967. Quantification method of classification process : concept of structural α - entropy. Kybernetika Cislo I. Rocnil, 3: 30–34. |
Библиографическая ссылка |
Hirschberg, J., Maasoumi, E. and Slottje, D. J. 1991. Cluster Analysis and the Quality of Life Across Countries . Journal of Econometrics, 50: 131–150. No.1/2 |
Библиографическая ссылка |
Hirschber, J. E., Maasoumi, J. E. and Slottje, D. J. 1992. A dynamic analusis of well-begin in the US based on clusters of attributes, Dallas, Texas: Graduate school of business, Univ. of Chicago. |
Библиографическая ссылка |
Huber, P. J. 1964. Robust estimation of a location parameter. Annals of Math. Stats, 35: 73–101. |
Библиографическая ссылка |
Jaynes, E. 1979. “Concentration of distributions”. In Papers on Probability, Statistics and Statistical Physics , Edited by: Rosenkrantz, R. and Jaynes, E. Dordrecht: Reidel. |
Библиографическая ссылка |
Jeffreys, H. 1967. Theory of probability, 3rd rev., London: Oxford University Press. |
Библиографическая ссылка |
Joe, H. 1989. Relative entropy measures of multivariate dependence. JASA, 84: 157–164. |
Библиографическая ссылка |
Joiner, B. and Hall, D. 1983. The ubiquitous rele of f′f in efficient estimation of location. The American Statistician, 37: 128–133. |
Библиографическая ссылка |
Jones, L. K. and Byrne , C. L. 1990. General entropy criteria for inverse problems, with applications to data compression, pattern classification, and cluster analysis . IEEE Trans. on Info. Theory, 36: 23–30. 1 |
Библиографическая ссылка |
Judge, G., Giffiths , W., Hill, C., Lutkepohl, H. and Lee, T-C. 1985. The theory and practice of econometrics, Second , Wiley. |
Библиографическая ссылка |
Kallianpour, G. 1960. “On the amount of information in a sigma field”. In Contributions to Probability and Statistics in Honour of H. Hotelling, Edited by: Olkin, I. Stanford U. Press. |
Библиографическая ссылка |
Kirmani, S.N.U.A. 1979. On the relation between Matusita's and Kolmigorov's measures of distance. Annals of Institute of Statist. Math , 31: 289–291. |
Библиографическая ссылка |
Klein, R. W. and Brown, S. J. 1989. Model selection under minimal prior information, Murray Hill: Bell Labs . |
Библиографическая ссылка |
Koenker, R. 1982. Robust methods in econometrics. Econometric Reviews , 1: 214–255. |
Библиографическая ссылка |
Kolmogorov, A. N. 1963. On the approximation of distribution of sums of independent summands by infinitely divisible distributions. Sankya, 25: 159–179. A |
Библиографическая ссылка |
Kullback, S. 1959. Information theory and stastistics , New York : Wiley. |
Библиографическая ссылка |
Kullback, S. and Leibler, R. A. 1951. On Information and sufficiency. Ann. of Math. Stats, 22: 79–86. |
Библиографическая ссылка |
Leamer, E. E. 1979. Information creteria for the choice of regression models a comment. Econometrica, 47: 507–510. |
Библиографическая ссылка |
Maasoumi, M. 1979. A measure of multivariate inequality, Memio: University of Southern California. |
Библиографическая ссылка |
Maasoumi, E. 1985. Unknow Regression Functions and Information Criteria, Indiana University, Department of Economics. |
Библиографическая ссылка |
Maasoumi, E. 1986a. The measurement and decomposition of multidimensional inequality. Econometrica, 54: 991–997. |
Библиографическая ссылка |
Maasoumi, E. 1986b. Unknown regression functions and information efficient functional forms: An interpretation. Advances in Econometrics, 5: 301–309. |
Библиографическая ссылка |
Maasoumi, E. 1988a. On econometric methodology. Economic Record, 5 |
Библиографическая ссылка |
Maasoumi, E. 1988b. “Information Theory”. In The New Palgrave: A Dictionary of Economics, Vol. 2, New York: Stockton Press. Reprinted in New Palgrave: Econometrics, Norton, 1990 |
Библиографическая ссылка |
Maasoumi, E. 1989a. Composite Indices of Income and Other Developmental Indicators: A General Approach. Research on Economic Inequality, 1: 269–286. |
Библиографическая ссылка |
Maasoumi, E. 1989b. Continnousky Distributed Attributes and Measures of Multivariate Inequality. Journal of Econometrics, 1: 131–144. |
Библиографическая ссылка |
Maasoumi, E. 1993. “Empirical Studies of well-being and inequality”. In Handbook of Applied Microeconometrics Edited by: Pesaran, M. H. and Schmidt, P. inpreparation |
Библиографическая ссылка |
Maasoumi, E. 1985. The Trend and the Measurement of World Inequality Over Extended Periods of Accounting. Economics Letters , 19: 295–301. |
Библиографическая ссылка |
Maasoumi, E. and Nickelsburg, G. 1988. Multivariate Measures of Well-Being and an Analysis of Inequality in the Michigan Data. Journal of Business and Economic Statistics, 6: 327–334. 3 |
Библиографическая ссылка |
Maasoumi, E. and Theil, H. 1979. The Effect of the Shape of the Income Distribution on Two Inequality Measures. Economics Letters, 4: 289–291. |
Библиографическая ссылка |
Maasoumi, E. and Zandvakili, S. 1986. A Class of Generalized Measures of Mobility with Applications. Economics Letters , 4: 97–102. |
Библиографическая ссылка |
Maasoumi, E. 1989. Mobility Profiles and Time Aggergates of Individual Incomes. Research on Economic Inequality, 1: 195–218. |
Библиографическая ссылка |
Maasoumi, E. 1990. Generalized Entropy Measures of Mobility for Different Sexes and Income Levels. Journal of Econometrics , 1: 121–133. |
Библиографическая ссылка |
Mahanalobis, P. C. 1930. On the test and measures of group divergences . Journal and Proceedings of the Asiatic Society of Bengal, 26: 541–588. New series, No.4 |
Библиографическая ссылка |
Mallows, C. L. 1973. Some comments on C<sub>P′</sub> . Technometrics, 15: 661–676. |
Библиографическая ссылка |
Manski, C. 1984. Adaptive estimation of non-linear regression models. Econometric reviews, 3: 145–194. |
Библиографическая ссылка |
Matusita, K. 1951. On the theory of decision functions. Ann.Inst.Statist.Math., 3: 17–35. |
Библиографическая ссылка |
Matusita, K. 1967. On the notion of affinity of several distributions and some of its applications. Ann.Inst.Statist.Math., 19: 181–192. |
Библиографическая ссылка |
Newey, W. 1988. Adaptive estimation of regression model via moment restrictions. Journal of econometrics, 38: 301–339. |
Библиографическая ссылка |
Pagan, A. R. and Hall, A. D. 1983. Diagnostic tests as residual analysis. Econometric reviews, 2: 159–254. Vol.2 |
Библиографическая ссылка |
Parzen, E. 1982. Maximum entropy interpretation of autoregressive spectral densities. Stats. and Prob. Letters, 1: 2–6. |
Библиографическая ссылка |
Pinsker, M. S. 1964. Information and information stability of random variables and processes , San Francisco: Holden-day. |
Библиографическая ссылка |
Prescott, P. 1976. On a test of normality based on sample entropy. Journal of the royal statistical society, 38: 254–256. B |
Библиографическая ссылка |
Rao, C. R. 1945. Information and the accuracy obtainable in the estimation of statistical parameters. Bull.Calcutta Math.Soc., 37: 81–91. |
Библиографическая ссылка |
Ram, R. 1982. Composite indices of physical quality of life, basic needs fulfillment, and income: a principal component representation. Journal of development economics, 11: 227–247. |
Библиографическая ссылка |
Renyi, A. On measures of entropy and information. Proc. 4th berkeley symposium. Vol. 1, pp.547–561. U. of California press. Statist. Probability |
Библиографическая ссылка |
Renyi, A. 1967. Statistics and information theory. Stuia.Sci.Math.Hungarica, 2: 249–256. |
Библиографическая ссылка |
Rissanem, J. 1987a. Stochastic complexity. J. of royal statistical society, 49: 223–265. Series B, No.3 (with discussion) |
Библиографическая ссылка |
Rissanem, J. 1987b. Stochastic complexity and the MDL principle. Econometric reviews, 1: 85–102. Vol. 6 |
Библиографическая ссылка |
Robinson, P. M. 1991. Consistent nonparametric entropy-based testing. Review of economic studies, 58: 437–453. |
Библиографическая ссылка |
Ryu, H. K. 1991. Maximum entropy estimation of density and regression functions. Journal of econometrics, 58 forthcoming |
Библиографическая ссылка |
Sawa, T. 1978. Information criteria for discriminating among alternative regression models. Econometrica, 46: 1273–1291. |
Библиографическая ссылка |
Shannon, C. E. 1948. The mathematical theory of communication. Bell System Tech Journal, 27: 379–423. 623-656, and in Shannon and Weaver (1949), The mathematical theory of communication, Univ. of Illinois, Urbana, 3-91 |
Библиографическая ссылка |
Shore, J. and Johnson, R. 1980. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Information Theory, 27: 26–37. IT-26 |
Библиографическая ссылка |
Shorrocks, A. F. 1978. Income Inequality and Income Mobility . Journal of Economic Theory, 19: 376–393. |
Библиографическая ссылка |
Shorrocks, A. F. 1980. The class of additively decomposable inequality measures. Econometrica, 48: 613–625. |
Библиографическая ссылка |
Shorrocks, A. F. 1984. Inequality decomposition by population subgroups. Econometrica, 52: 1369–1385. |
Библиографическая ссылка |
Soofi, E. S. 1990. Effects of collinearity on information about regression coefficients . Journal of econometrics, 52: 255–274. |
Библиографическая ссылка |
Soofi, E. S. and Gokhale, D. V. 1991. An information criteria for normal regression estimation. Statistics and Probability Letters, 52: 111–117. |
Библиографическая ссылка |
Theil, H. 1967. Economics and Information Theory, Illinois, , Chicago: Rand McNally. |
Библиографическая ссылка |
Theil, H. and Fiebig, D. C. 1984. Expoliting continuity: Maximum Entropy Estimation of Continuous Distributions, Cambridge, MA: Ballinger. |
Библиографическая ссылка |
Theil, H. and Laitinen, C. 1980. “Singulat moment matrices in applied econometrics”. In Multivariate Analusis - V, Edited by: Krishnaiah, P. R. 629–649. North-Holland Publishing Co. |
Библиографическая ссылка |
Vasicek, O. 191976. A test for normality based on sample entropy. Journal of Royal Stastistical Society, : 54–59. 38B |
Библиографическая ссылка |
Weiner, N. 1949. Cybernetics, New York: Wiley. |
Библиографическая ссылка |
White, H. 1990. Modelling Economic Series , Edited by: Granger, C.W.J. Oxford: Oxford University Press. |
Библиографическая ссылка |
White, H. 1992. Estimation, inference and specification analysis, Cmbridge U. Press. Forthcoming |
Библиографическая ссылка |
Whittle, P. 1953. Estimating and information in stationary time series. Ark. Math, 2: 423–434. |
Библиографическая ссылка |
Zellner, A. and Highfield, R. 1988. Calculation of macimum entropy distributions and approximation of marginal distributions. Journal of Econometrics, 37: 195–209. |