Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Broock, W. A.
Автор Scheinkman, J. A.
Автор Dechert, W. D.
Автор LeBaron, B.
Дата выпуска 1996
dc.description This paper presents a test of independence that can be applied to the estimated residuals of any time series model that can be transformed into a model driven by independent and identically distributed errors. The first order asymptotic distribution of the test statistic is independent of estimation error provided that the parameters of the model under test can be estimated -consistently. Because of this, our method can be used as a model selection tool and as a specification test. Widely used software<sup>1</sup> written by Dechert and LeBaron can be used to implement the test. Also, this software is fast enough that the null distribution of our test statistic can be estimated with bootstrap methods. Our method can be viewed as a nonlinear analog of the Box-Pierce Q statistic used in ARIMA analysis.
Формат application.pdf
Издатель Marcel Dekker, Inc.
Копирайт Copyright Taylor and Francis Group, LLC
Тема Nonlinear Time Series
Тема Specification Tests
Тема Correlation Dimension
Тема Chaos
Название A test for independence based on the correlation dimension
Тип research-article
DOI 10.1080/07474939608800353
Electronic ISSN 1532-4168
Print ISSN 0747-4938
Журнал Econometric Reviews
Том 15
Первая страница 197
Последняя страница 235
Аффилиация Broock, W. A.; Department of Economics, University of Wisconsin
Аффилиация Scheinkman, J. A.; Department of Economics, University of Chicago
Аффилиация Dechert, W. D.; Department of Economics, University of Houston
Аффилиация LeBaron, B.; Department of Economics, University of Wisconsin
Выпуск 3
Библиографическая ссылка Abhyankar, A., Copeland, L. and Wong, W. 1995. Nonlinear Dynamics in Real-Time Equity Market Indices: Evidence form the U.K. Economic Journal, forthcoming
Библиографическая ссылка Baek, E. G. and Brock, W. A. 1992. A Nonpararnetric Test for Independence of a Multivariate Time Series. Statistica Sinica, 2: 137–156.
Библиографическая ссылка Barnett, W. R., Gallant, R. and Hinich, M. Detection of Nonlinearity and Chaos: Application to Money Stock. Proceedings of the American Statistical Association, Business and Economics Section.
Библиографическая ссылка Barnett, W. A. and Hinich, M. 1993. “Has Chaos Been Discovered With Economic Data?”. In Nonlinear Dynamics and Evolutionary Economics, Edited by: Day, R. H. and Chen, P. 254–265. Oxford: Oxford University Press.
Библиографическая ссылка Bierens, H. 1990. A Consistent Conditional Moment Test of Functional Form. Econometrica, 58: 1443–1458.
Библиографическая ссылка Bollerslev, T. 1986. Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31: 307–327.
Библиографическая ссылка T., R. Y., N. and K. F. 1990. ARCH Modeling in Finance: A Review of the Theory and Empirical Evidence. Journal of Econometrics, 52(1): 5–60.
Библиографическая ссылка Bollerslev, T., Engle, R. F. and Nelson, D. B. 1993. “ARCH Models”. In Handbook of Econometrics, Vol. IV, Amsterdam: North Holland. Chap. 49
Библиографическая ссылка Brock, W. A. 1987. Notes On Nuisance Parameter Problems in BDS Type Tests for lID, University of Wisconsin at Madison. Department of Economics, revised 1989
Библиографическая ссылка W. A. and W. D. A General Class of Specification Tests: The Scalar Case. Business and Economics Statistics Section of the Proceedings of the American Statistical Society. pp.70–79.
Библиографическая ссылка Brock, W. A., Hsieh, D. and Lebaron, B. 1991. Nonlinear Dynamics, Chaos, and Instability: Statistical Theory and Economic Evidence, Cambridge, Massachusetts: MIT Press.
Библиографическая ссылка W. A., J. and B. 1992. Simple Technical Trading Rules and the Stochastic Properties of Stock Returns. Journal of Finance, XLVII: 1731–1764.
Библиографическая ссылка Brock, W. A. and Potter, S. 1993. “Nonlinear Time Series and Macroeconomics”. In Handbook of Statistics, Edited by: Maddala, G. S., Rao, C. R. and Vinod, H. D. Vol. II, 195–229. Amsterdam: North Holland.
Библиографическая ссылка W. A. and C. 1988. Is The Business Cycle Characterized by Deterministic Chaos?. Journal of Monetary Economics, 22: 71–90.
Библиографическая ссылка Casti, J. 1992. Reality Rules: Picturing the World in Mathematics, New York: John Willey and Sons.
Библиографическая ссылка J. and M. 1991. On Nonlinear Dynamics: The Case of the Pork Cycle. Anlerican Journal of Agricultural Economics, 73: 819–828.
Библиографическая ссылка De Jong, R. M. 1992. The Bierens Test Under Data Dependence, Southern Methodist University. Departrnent of Economics
Библиографическая ссылка De Lima, P. 1992a. A Test for IID Based upon the DDS Statistic, Southern Hopkins University. Department of Ecnomics
Библиографическая ссылка De Lima, P. 1992b. Testing Nonlinearities in Economic Time Series Under Moment Condition Failure, Johns Hopkins University. Department of Ecnomics
Библиографическая ссылка Dechert, W. D. 1989. An Application of Chaos Theory to Stochastic and Deterministic Observations, University of Houston. Department of Economics
Библиографическая ссылка Dechert, W. D. 1994. The Correlation Integral and the Independence of Gaussian and Related Processes, University of Wisconsin-Madison. SSRI Working Paper 9412
Библиографическая ссылка M. and G. 1983. On U-Statistics and von Mises Statistics for Weakly Dependent Processes. Zeitschrift fü Wahrscheinlichkeitstheorie und verwandte Gebiete, 64: 505–522.
Библиографическая ссылка M. and G. 1986. Rigorous Statistical Proceedures for Data from Dynamical Systems. Journal of Statistical Physics, 44: 67–93.
Библиографическая ссылка R. 1982. Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflations. Econometrica, 50: 987–1007.
Библиографическая ссылка K., Schwart, G. and R. 1987. Expected Stock Returns and Volatility. Journal of Financial Economics, 19: 3–29.
Библиографическая ссылка Gallant, A. D. and Hsieh, D. On Fitting a Recalcitrant Series: The Pound/Dollar Exchange Rate, 1974-83. Nonparametric and Semiparanietric Methods in Econometrics and Statistics. Proceedings of the Fifth International Symposium in Economic Theory and Econometrics. Edited by: Barnett, W. A., Powell, J. and Tauchen, G. Cambridge University Press.
Библиографическая ссылка P. and I. 1983. Measuring the Strangeness of Strange Attractors. Physica, 9D: 189
Библиографическая ссылка Grauwe, P. D., Dewachter, H. and Embrachts, M. 1993. Exchange Rate Theory, Oxford: Blackwell.
Библиографическая ссылка C. and J. 1994. Testing for Linear and Nonlinear Granger Causality. Journal of Finance, 49: 1639–1664.
Библиографическая ссылка M. 1982. Testing for Gaussianity and Linearity of a Stationary Time Series. Journal of Time Series Analysis, 3(3): 169–176.
Библиографическая ссылка D. 1987. Testing for Nonlinear Dependence in Foreign Exchange Rates. Journal of Business, 62(3): 339–368.
Библиографическая ссылка D. 1990. Implications of Nonlinear Dynamics for Financial Risk Management, Duke University. Fuqua School of Business
Библиографическая ссылка D., Hsieh, D. and LeBaron, B. 1991. “Small Sample Properties of the BDS Statistic, I”. In Nonlinear Dynamics, Chaos, and Instability, Edited by: Brock, W. A., Hsieh, D. and LeBaron, B. Cambridge, Massachusetts: MIT Press. 1988a
Библиографическая ссылка Hsieh, D. and LeBaron, B. 1999. “Small Sample Properties of the BDS Statistic, II”. In Nonlinear Dynamics, Chaos, and Instability, Edited by: Brock, W. A., Hsieh, D. and LeBaron, B. Cambridge, Massachusetts: MIT Press. 1988b
Библиографическая ссылка Hsieh, D. and LeBaron, B. 1991. “Small Sample Properties of the BDS Statistic, III”. In Nonlinear Dynamics, Chaos, and Instability, Edited by: Brock, W. A., Hsieh, D. and LeBaron, B. Cambridge, Massachusetts: MIT Press. 1988c
Библиографическая ссылка Jaitz, T. 1994. “Spurious Non-Linear Granger Causality”. In Bureau of Labor Statistics Washington, D.C. Division of Price and Index Numbers
Библиографическая ссылка Johnson, D. and McClelland, R. 1994. “A General Dependence Test and Applications”. In Bureau of Labor Statistics Washington, D.C Division of Price and Index Numbers
Библиографическая ссылка Krager, H. 1992. “Modelling Cyclical Asymmetry in a Production Series Using Threshold Autoregressive Models”. In Output and Employment Fluctuations, Edited by: Zimmermann, K. Vol. 58, 3–4. Institut de Recherches Economiques, Universite Catholique de Louvain. Special Issue, Recherches Economiques de Louvain, pp. 473-486.
Библиографическая ссылка S. and R. A. 1961. On Information and Sufficiency. Annals of Mathematical Statistics, 22: 79–86.
Библиографическая ссылка Lai, D. and Wiorkowski, J. 1994. Local Asymptotic Normality for Multivariate Nonlinear AR Processes, Houston: University of Texas. Gifford Fang Associates and University of Texas (Dallas)
Библиографическая ссылка LeBaron, B. 1991. “Nonlinear Puzzles in Stock Returns”. In Nonlinear Dynamics, Chaos, and Instability, Edited by: Brock, W. A., Hsieh, D. and Lebaron, B. Cambridge, Massachusetts: MIT Press. 1991
Библиографическая ссылка LeBaron, B. 1988. Stock Return Nonlinearities: Some Initial Tests and Findings, University of Chicago. Ph.D thesis
Библиографическая ссылка T. H., H. and C. W. J. 1993. Testing for Neglected Nonlinearity in Time Series, A Comparison of Neural Network Methods and Alternative Tests. Journal of Econometrics, 56: 269–290.
Библиографическая ссылка LePage, R. 1992. Exploring the Limits of Bootstrap, Edited by: Billard, L. New York: John Willey & Sons.
Библиографическая ссылка Liu, T. 1990. Time Series of Synchronization and Chaos, Universiy of California San Diego. Ph.D Thesis
Библиографическая ссылка M. and P. 1994. Testing the Covariance Stationarity of Heavy Tailed Time Series: An Overview of the Theory with Applications to Several Financial Datasets. Journal of Empirical Finance, 1: 211–248.
Библиографическая ссылка McClelland, R. and Johnson, D. 1993. “A General Nonparametric Dependence Test for Independence and Applications”. In Bureau of Labor Statistics Washington, D.C Division of Price and Index NU111ber Research
Библиографическая ссылка A. and A. 1983. Diagnostic Tests as Residual Analysis. Econometric Reviews, 2: 159–218.
Библиографическая ссылка Pesaran, M. H. 1993. Nonlinear Dynamics, Chaos and Econometrics, Edited by: Potter, S. M. New York: John Wiley & Sons.
Библиографическая ссылка Peters, E. 1994. Fractal Market Analysis: Applying Chaos Theory to Investment and Economics, New York: John Willey and Sons.
Библиографическая ссылка Pollard, D. 1984. Convergence of Stochastic Processes, New York: Springer-Verlag.
Библиографическая ссылка Potter, S. 1995. “Nonlinear Models of Economic Fluctuations”. In Macroeconomics: Developments, Tensions, and Prospects, Edited by: Iloover, K. D. Boston: Kluwer Academinc.
Библиографическая ссылка Potters, S. M. 1994. Nonlinear Time Series and Economic Fluctuations, University of Wisconsin. Ph.D thesis
Библиографическая ссылка R. H. 1982. On the Asymptotic Normality of Statistics with Estimated Par ametcrs. The Annals of Statistics, 10: 462–474.
Библиографическая ссылка Scheinkman, J. A. and LeBaron, B. 1989b. “Nonlinear Dynamics and GNP Data”. In Economic Complexity: Chaos, Sunspots, Bubbles, and Nonlinearity, Edited by: Barnett, W. A., Geweke, J. and Shell, K. Cambridge University Press.
Библиографическая ссылка Scheinkman, J. A. and LeBaron, B. 1989a. Nonlinear Dynamics and Stock Returns. Journal of Business, 62: 311–337.
Библиографическая ссылка Schwert, G. Business Cycles, Financial Crises and Stock Volatility. Carneige Rochester Conference Series on Public Policy. Vol. 31, pp.83–126.
Библиографическая ссылка Serfling, R. J. 1980. Approximation Theorems of Mathematical Statistics, New York: John Willy & sons.
Библиографическая ссылка J. 1988. Estimating Continuous Time Processes Subject to Time Deformation: An Application to Postwar U.S. GNP. Journal of American Statistical Association, 83: 77–85.
Библиографическая ссылка T. and M. 1980. A Test for Linearity of Stationary Time Series. Journal of Time Series Analysis, 1(1): 145–158.
Библиографическая ссылка G. 1985. Diagnostic Testing and Evaluation of Maximum Likelihood Models. Journal of Econometrics, 30(1): 415–443.
Библиографическая ссылка Terasvirta, T. D., Tjostheim, D. and Granger, W. J. 1994. “Aspects of Modelling Nonlinear Time Series”. In Handbook of Econometrics, Vol. IV, 1917–1957. Amsterdam: Norht Holland. Chap.48
Библиографическая ссылка J. 1988. Statistical Precision of Dimension Estimators. Physics Review, 41A(6): 3038–3051.
Библиографическая ссылка J. and S. 1994. Don't Bleach Chaotic Data. Chaos, 3(6): 771–782.
Библиографическая ссылка J., S., A., B. and J. D. 1992. Testing for Nonlinearity in Time Series: The Method of Surogate Data. Physica, 58D(6): 77–94.
Библиографическая ссылка R. 1986. Nonlinearity Tests for Time Series. Biometrica, 73(2): 461–466.
Библиографическая ссылка Vaga, T. 1994. Profiting front Chaos: Using Chaos Theory for Market Timing, Stock Selection, and Option Valuation, New York: McGraw-Hill.
Библиографическая ссылка White, H. 1987. “Specification Testing in Dynamic Models”. In Advances in Econometrics, Edited by: Bewley, T. New York: Cambridge University Press.
Библиографическая ссылка Woleff, R. C. L. 1995. “A Poisson Distribution for the BDS Test Statistic for Independence in a Time Series”. In Chaos and Forecasting, Edited by: Tong, H. 109–127. London: World Scientific. Chap. 5
Библиографическая ссылка K., R. and W. A. 1993. Statistical Tests for Deterministic Effects in Broad Band Tin1e Series. Physica, 69D: 172–188.

Скрыть метаданые