Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Anitescu <sup>*</sup> , Mihai
Автор Coroian <sup>*</sup> , Dan I
Автор Zuhair Nashed <sup>*</sup> , M.
Автор Potra <sup>*</sup> , Florian A
Дата выпуска 1996
dc.description In this paper, a numerical method for solving overdetermined differential algebraic equations that arise in multi body dynamics is proposed. The method is based on Newton type iterations using outer inverses. We prove that the ssf method and tangent space parametrization can be regarded as particular cases of our method
Формат application.pdf
Издатель Marcel Dekker, Inc
Копирайт Copyright Taylor and Francis Group, LLC
Название Outer inverses and multi body system simulation
Тип research-article
DOI 10.1080/01630569608816717
Electronic ISSN 1532-2467
Print ISSN 0163-0563
Журнал Numerical Functional Analysis and Optimization
Том 17
Первая страница 661
Последняя страница 678
Выпуск 7-8
Библиографическая ссылка Führer, C and Leimkuhler, B. 1991. Numerical solution of differential algebraic equations for constrained mechanical motion. Numer. Math, 59: 55–69.
Библиографическая ссылка Führer, C and Leimkuhler, B. 1991. “A new class of generalized inverses for the solution of discretized Euler Lagrange equations”. In Real Time Integration Methods for Mechanical System Simulation, Edited by: Deyo, R and Haug, E. 143–154. Berlin: Springer Verlag.
Библиографическая ссылка Haug, E.J. 1989. Computer Aided Kinematics and Dynamics of Mechanical Systems, Basic Methods. Allyn and Bacon, 1 Boston
Библиографическая ссылка Nashed, M.Z. 1987. Inner, outer, and generalized inverses in Banach and Hilbert spaces. Numer. Funct. Anal. Optimization, 9: 261–325.
Библиографическая ссылка Nashed, M.Z and Chen, X. 1993. Convergence of newton like methods for singular operator equations using outer inverses. Numer. Math, 66: 235–257.
Библиографическая ссылка Petzold, L.R and Potra, F.A. 1992. ODAE methods for the numerical solution of Euler Lagrange equations. Applied Numerical Mathematics, 10: 397–413.
Библиографическая ссылка Potra, F.A. 1993. Implementation of linear multistep methods for solving constrained equations of motion. SIAM J. Numer. Anal, 30(3): 774–789.
Библиографическая ссылка Rao, C.R and Mitra, S.K. 1971. “Generalized Inverse of Matrices and its Applications”. John Wiley & Sons.

Скрыть метаданые