Автор |
Joachim Oberle, Hans |
Автор |
Von Storch, Hans |
Автор |
Tahvonen, Olli |
Дата выпуска |
1996 |
dc.description |
In this paper a highly simplifed model is considered which describes the interaction of anthropogenic climate changes represented by the influences due to the enhanced emission of Co<sub>2</sub> resulting in the increase of the averaged surface air temperature on one side, and the economical effects described by the abatement costs for the reduction of emissions on the other side The model is formulated as a linear-quadratic optimal control problem with a compact control region. By applying the standard necessary conditions, a multipoint-boundary-value problem is derived and its numerical solution obtained by multiple-shooting technique is presented. Special attention is paid to the computation of the reachable set of the system and to the dependence of the control structure on the final state prescribed In order to smooth a certain irregular behaviour of the solutions near the end of the arbitrarilly fixed time-interval, an additional monotonicity constraint for the CO<sub>2</sub>-concentration is introduced. Solutions of this extended optimal control problem are presented too and they are compared with the former solutions |
Формат |
application.pdf |
Издатель |
Marcel Dekker, Inc |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Climate model |
Тема |
optimal control |
Тема |
control constraints |
Тема |
minimum principle |
Тема |
numerical method |
Тема |
reachable set |
Название |
Numerical computation of optimal reduction of CO<sub>2</sub>—emissions for a simplified climate-economy model |
Тип |
research-article |
DOI |
10.1080/01630569608816726 |
Electronic ISSN |
1532-2467 |
Print ISSN |
0163-0563 |
Журнал |
Numerical Functional Analysis and Optimization |
Том |
17 |
Первая страница |
809 |
Последняя страница |
822 |
Аффилиация |
Joachim Oberle, Hans; Institute of Applied Mathematics, University of Hamburg |
Аффилиация |
Von Storch, Hans; Max–Planck–Institute of Meteorology |
Аффилиация |
Tahvonen, Olli; Department of Economics, University of Oulu |
Выпуск |
7-8 |
Библиографическая ссылка |
Bryson, A.E and Ho, Y.C. 1969. “Applied optimal Control”. Waltharm, Massachusetts: Ginn and Company. |
Библиографическая ссылка |
Feichtinger, G and Hartl, R.F. 1979. “Optimale Kontrolle ökonomischer Prozesse”. Vol. 41, Berlin, New York: Walter de Gruyter. 1986, Issn 0344-0842 |
Библиографическая ссылка |
Halkin, H. 1964. A generalization of La Salle's bang-bang principle. SIAM Journal on Control, 2: 199–202. |
Библиографическая ссылка |
1990. “Intergovernmental panel on climate change(IPCC)”. In The IPCC scientific assessment, Cambridge University Press. |
Библиографическая ссылка |
Maier—Reimer, E and Hasselmann, K.F. 1987. Transportation and storage of Co <sub>2</sub> in the ocean- an inorganic ocean-circulation carbon cycle model. Climate Dynamics, 2: 63–90. |
Библиографическая ссылка |
Maurer, H. 1979. On the minimum principle for optimal control problems with state constraints. Schriftenreihe des Rechenzentrums der Universität Münster, 41: 0344–0842. ISSN |
Библиографическая ссылка |
Sreenath, N. 1993. “Systems representation of global climate change models”. In Lecture Notes in Control and Information Sciences, Vol. 186, Berlin, Heidelberg, New York: Springer Verlag. |
Библиографическая ссылка |
Stoer, J and Bulirsch, R. 1990. “Numerische Mathematic II”. Berlin, Heidelbergm, New York: Springer Verlag. |
Библиографическая ссылка |
Strauss, A. 1968. “An introduction to optimal control theory”. In Lecture Notes in Operations Research and Mathematical Economics, Vol. 3, Berlin, Heidelberg, New York: Springer Verlag. |
Библиографическая ссылка |
Tahvonen, O, Von Storch, H and Von Storch, J. 1994. “Economic efficiency of Co<sub>2</sub>—reduction programs”. Climate Research, in Press. |