Автор |
Yan Yan Li |
Дата выпуска |
1989 |
dc.description |
We introduce, along the lines of [4], an integer valued degree for second order fully nonlinear elliptic operators which is invariant under homotopy within elliptic operators. We also give some applications to the bifurcation problem for nonlinear elliptic equations. Applications to the existence of solutions of certain fully nonlinear elliptic equations on compact manifolds can be found in [7]. |
Формат |
application.pdf |
Издатель |
Marcel Dekker, Inc. |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
Degree Theory for Second Order Nonlinear Elliptic Operators and its Applications |
Тип |
research-article |
DOI |
10.1080/03605308908820666 |
Electronic ISSN |
1532-4133 |
Print ISSN |
0360-5302 |
Журнал |
Communications in Partial Differential Equations |
Том |
14 |
Первая страница |
1541 |
Последняя страница |
1578 |
Аффилиация |
Yan Yan Li, ; Department of Mathematics, Princeton University |
Выпуск |
11 |
Библиографическая ссылка |
Agmon, S., Douglis, A. and Nirenberg, L. 1959. Estimates near the boundary for solutions of elliptic prtial differential equations satisfying general boundary conditions. Comm. Pure Appl. Math., 12: 623–727. |
Библиографическая ссылка |
Agmon, S., Douglis, A. and Nirenberg, L. 1964. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Comm. Pure Appl. Math., 17: 35–92. |
Библиографическая ссылка |
Aubin, T. 1982. Nonlinear analysis on manifolds. Monge–Ampère equations, Springer–Verlag. |
Библиографическая ссылка |
Fitzpatrick, P. M. and Pejsachowicz, J. 1982. An extension of the Leray–Schauder degree for fully nonlinear elliptic problems. Symposia in pure math. AMS Proceedings. pt. 1: Nonlinear Functional Analysis and its applications, 45: 425 |
Библиографическая ссылка |
Gilbarg, D. and Trudinger, N. S. “Elliptic partial equations”. In Grundlehoen der mathematischen Wissenschaften, Vol. 224, Springer–Verlag. |
Библиографическая ссылка |
Kato, T. “Perturbation theory for linear operators”. In Grundlehoen der mathematischen Wissenschaften, Vol. 132, Springer–Verlag. |
Библиографическая ссылка |
Rabinowitz, P. H. 1974. Variational methods for nonlinear eigenvalue problems, 141–195. Roma: Edicioni Cremonese. |
Библиографическая ссылка |
Rabinowitz, P. H. 1971. “A global theorem for nonlinear eigen–value problems and applications”. In Contrib. Nonlinear Fcl. Anal., 11–36. Acadmic Press. |
Библиографическая ссылка |
Stuart, C. A. 1982. Bifurcation for Dirichlet problems without eigenvalues. Proc. London Math. Soc., 45(3): 169–192. |