Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Yan Yan Li
Дата выпуска 1989
dc.description We introduce, along the lines of [4], an integer valued degree for second order fully nonlinear elliptic operators which is invariant under homotopy within elliptic operators. We also give some applications to the bifurcation problem for nonlinear elliptic equations. Applications to the existence of solutions of certain fully nonlinear elliptic equations on compact manifolds can be found in [7].
Формат application.pdf
Издатель Marcel Dekker, Inc.
Копирайт Copyright Taylor and Francis Group, LLC
Название Degree Theory for Second Order Nonlinear Elliptic Operators and its Applications
Тип research-article
DOI 10.1080/03605308908820666
Electronic ISSN 1532-4133
Print ISSN 0360-5302
Журнал Communications in Partial Differential Equations
Том 14
Первая страница 1541
Последняя страница 1578
Аффилиация Yan Yan Li, ; Department of Mathematics, Princeton University
Выпуск 11
Библиографическая ссылка Agmon, S., Douglis, A. and Nirenberg, L. 1959. Estimates near the boundary for solutions of elliptic prtial differential equations satisfying general boundary conditions. Comm. Pure Appl. Math., 12: 623–727.
Библиографическая ссылка Agmon, S., Douglis, A. and Nirenberg, L. 1964. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Comm. Pure Appl. Math., 17: 35–92.
Библиографическая ссылка Aubin, T. 1982. Nonlinear analysis on manifolds. Monge–Ampère equations, Springer–Verlag.
Библиографическая ссылка Fitzpatrick, P. M. and Pejsachowicz, J. 1982. An extension of the Leray–Schauder degree for fully nonlinear elliptic problems. Symposia in pure math. AMS Proceedings. pt. 1: Nonlinear Functional Analysis and its applications, 45: 425
Библиографическая ссылка Gilbarg, D. and Trudinger, N. S. “Elliptic partial equations”. In Grundlehoen der mathematischen Wissenschaften, Vol. 224, Springer–Verlag.
Библиографическая ссылка Kato, T. “Perturbation theory for linear operators”. In Grundlehoen der mathematischen Wissenschaften, Vol. 132, Springer–Verlag.
Библиографическая ссылка Rabinowitz, P. H. 1974. Variational methods for nonlinear eigenvalue problems, 141–195. Roma: Edicioni Cremonese.
Библиографическая ссылка Rabinowitz, P. H. 1971. “A global theorem for nonlinear eigen–value problems and applications”. In Contrib. Nonlinear Fcl. Anal., 11–36. Acadmic Press.
Библиографическая ссылка Stuart, C. A. 1982. Bifurcation for Dirichlet problems without eigenvalues. Proc. London Math. Soc., 45(3): 169–192.

Скрыть метаданые