Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Mukhopadhyay, N.
Автор Judge, J.
Дата выпуска 1990
dc.description We wish to select, from k(≥;2) independent normal populations, the one associated with the largest mean, assuming that the common variance is unknown. We adopt the “indifference zone” approach of Bechhofer (1954), and first consider the sequential selection rule of Robbins et al. (1968). We then turn our attention to the “permutation-invariant” idea, as introduced in Mukhopadhyay et al. (1989). Often, sequential stopping rules, such as the stopping rule of Robbins et al. (1968)) are dependent on the order in which the data is observed. With permutation-invariant stopping rules, all possible permutations of the data are subjected to the stopping rule. We apply this idea to the stopping rule of Robbins et al. (1968)) and develop a permutation-invariant version. First-order asymptotic results are established, and compared to the corresponding results for the non-permutation-invariant procedure. Computer simulations are used to compare the moderate sample size performances of the two procedures.
Формат application.pdf
Издатель Marcel Dekker, Inc.
Копирайт Copyright Taylor and Francis Group, LLC
Тема Indifference zone
Тема average sample size
Тема probability of correct selection
Тема least favorable configuration
Тема asymptotic analyszs
Название A note on a permutation invariant sequential selection procedure
Тип research-article
DOI 10.1080/07474949008836197
Electronic ISSN 1532-4176
Print ISSN 0747-4946
Журнал Sequential Analysis
Том 9
Первая страница 81
Последняя страница 88
Аффилиация Mukhopadhyay, N.; Department of Statistics, University of Connecticut
Аффилиация Judge, J.; Department of Mathematics, Westfield State College
Выпуск 1
Библиографическая ссылка Bechhofer, R.E. 1954. A single-sample multiple decision procedure for ranking means of normal populations with the known variances. Ann. Math. Statist., 25: 16–39.
Библиографическая ссылка Bechhofer, R.E., Kiefer, J. and Sobel, M. 1968. Seauential Identification and Rankina Procedures, Chicago, , Illinois: University of Chicago.
Библиографическая ссылка Chow, Y.S. and Robbins, H. 1965. On the asymtotic theory of fixed width sequential confidence intervals for the mean. Ann. Math. Statist., 36: 457–462.
Библиографическая ссылка Gibbons, J.D., Olkin, I. and Sobel, M. 1977. Selecting and Ordering Populations: A New Statistical Methodology, New York: J Wiley and Sons Inc. Inc.
Библиографическая ссылка Gupta, S.S. and Panchapakesan, S. 1979. Multiple Decision Procedures: Methodology of Selecting and Ranking Populations, New York: J Wiley and Sons. Inc.
Библиографическая ссылка Mukhopadhyay, N. and Judge, J. 1989. Second order expansions for a sequential selection prodecure. Sankhya, Series A to appear
Библиографическая ссылка Mukhopadhyay, N., Sen, P.K. and Sinha, B.K. 1989. Permutatin invariance stopping rules and sufficiency principle. Ann. Inst. Statist. Math., 41: 121–138.
Библиографическая ссылка Robbins, H., Sobel, M. and Starr, N. 1968. A sequential procedure for selecting the largest of K means. Ann. Math. Statist., 39: 88–92.

Скрыть метаданые