Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Alam, Khursheed
Автор Kulasekera, K.B.
Дата выпуска 1993
dc.description There are given k stochastically ordered populations. A sequential sampling procedure (S) is proposed for selecting the population associated with the largest rank in the ordering. Observations are taken one at a time from each of the k populations. The procedure S allows for a specified maximum number (M) of observations to be taken from each population. The stage N at which the sampling is stopped depends on the choice of a parameter c. The choice of c is based on a trade-off between the expected number of observations and the probability of a correct selection (PCS). A table is given showing the values of c, the associated values of the PCS and the expected sample number, based on the asymptotic properties of S when M is large. Empirical results are given, based on a simulation study of the small sample properties of S.
Формат application.pdf
Издатель Marcel Dekker, Inc.
Копирайт Copyright Taylor and Francis Group, LLC
Тема Sequential Selection
Тема Rank Statistics
Тема Stochastic Ordering
Название A nonparametric sequential selection procedure
Тип research-article
DOI 10.1080/07474949308836286
Electronic ISSN 1532-4176
Print ISSN 0747-4946
Журнал Sequential Analysis
Том 12
Первая страница 271
Последняя страница 288
Аффилиация Alam, Khursheed; Department of Mathematical Sciences, Clemson University
Аффилиация Kulasekera, K.B.; Department of Mathematical Sciences, Clemson University
Выпуск 3-4
Библиографическая ссылка Alam, K. 1971. On selecting the most probable category. Technometrics, 13: 843–850.
Библиографическая ссылка Alam, K. and Thompson, J.R. 1971. A selection procedure based on ranks. Ann. Inst. Stat. Math., 23: 253–262.
Библиографическая ссылка Alam, K. and Rizvi, M.H. 1989. A selection procedure based on rank order Statistics. The IMS Bulletin, 18(3)
Библиографическая ссылка Alam, K., Seo, K. and Thompson, J.R. 1971. A sequential sampling rule for selecting the most probable multinomial event. Ann. Inst. Stat. Math., 23(3): 65–374.
Библиографическая ссылка Bartlett, N.S. and Govindarajulu, Z. 1968. Some distribution-free statistics and their application to the selection problem. Ann. Inst. Stat. Math., 20(3): 79–97.
Библиографическая ссылка Bechhofer, R.E. 1958. A sequential multiple decision procedure for selecting the best one of several normal populations with a common known variance and various experimental designs. Biometrics, 14(3): 408–429.
Библиографическая ссылка Bechhofer, R.E. 1970. An undersirable feture of a sequential multiple-decision procedure for selecting the best one of several normal populations with a common known variance. Biometrics, 26(3): 346–349. Correction Note
Библиографическая ссылка Bechhofer, R.E. and Goldsman, D.M. 1987. Truncation of the Bechhofer-Kiefer-Sobel sequential procedure for selecting the normal population which has the largest mean. Comm. Statist. Simulation Comput., 16(3): 1067–1092.
Библиографическая ссылка Bechhofer, R.E. and Goldsman, D.M. 1987. “Sequential selection procedures for multi- factor experiments involving Koopman-Darmois populations with additivity”. In Statistical Decision Theory and Related Topics - IV, Edited by: Gupta, S.S. and Berger, J.O. Vol. 2, 3–22. New York: Springer-Verlag.
Библиографическая ссылка Bechhofer, R.E. and Goldsman, D.M. 1988. Truncation of the Bechhofer-Kiefer-Sobel sequential procedure for selecting the normal population which has the largest mean (II):2-factor experiments with no interaction. Comm. Statist. Simulation Comput., 17: 103–128.
Библиографическая ссылка Bechhofer, R.E., Kiefer, J. and Sobel, M. 1968. Sequential Identification and ranking procedures, University of Chicago Press.
Библиографическая ссылка Kulkarni, R.V. 1982. On the performance characteristics of a closed adaptive sequential procedure for selecting the best Bernoulli population. Sequential Anal., 1: 315–354.
Библиографическая ссылка Bechhofer, R.E. and Kulkarni, R.V. 1982. “Closed adaptive sequential procedures forselecting the best of k > 2 Bernoulli populations”. In Statistical Decision Theory and Related Topics - III, Edited by: Gupta, S.S. and Berger, J.O. Vol. 1, 61–108. New YOrk: Academic Press.
Библиографическая ссылка Billingseley, P. 1968. Convergence of Probability Measures, New York: Wiley.
Библиографическая ссылка Buringer, H., Martin, H. and Schriever, K.H. Nonparametric Sequential Selection Procedures
Библиографическая ссылка Cacoullos, T. and Sobel, M. 1966. “An inverse sampling procedure for selecting the most probable event in a multinomial distribution”. In Multivariate Analysis, Edited by: Krishnaiah, P.R. 423–455. New York: Academic.
Библиографическая ссылка Donsker, M. 1951. An invariance principle for certain probability limit theorems. Mem. Amer. Math. Soc., 6
Библиографическая ссылка Ghosh, M. 1973. Nonparametric Selection procedures for symmetric location parameter populations. Ann. Statist, 1: 773–779.
Библиографическая ссылка Gupta, S.S. and Mc Donald, G.C. 1970. “On some classes of selection procedures based on ranks”. In Nonparametric Techniques in Statistical Inference, Edited by: Puri, M.L. 491–514. London: Cambridge University Press.
Библиографическая ссылка Gupta, S.S. and Panchapakesan, S. 1979. Multiple Decision Procedures: Theory and Methodology of Selecting and Ranking Populations, New York: John Wiley & Sons.
Библиографическая ссылка Jennison, C. 1983. Equal probability of correct selection for Bernoulli selection procedures. Comm. Statist. Theory Methods, 12: 2887–2896.
Библиографическая ссылка Jennison, C. and Kulkarni, R.V. 1984. “Optimal procedures for selecting the best s outof k Bernoulli populations”. In Design of Experiments Ranking and Selection, Edited by: Santner, T.J. and Tamhane, A.C. 113–125. New York: Marcel Dekker.
Библиографическая ссылка Kao, S.C. and Lai, T.L. 1980. Sequential selection procedures based on confidence sequences for normal populations. Comm. Statist. A-Theory Methods, 9: 1657–1676.
Библиографическая ссылка Lehmann, E.L. 1963. A class of selection procedures based on ranks. Math. Ann, 9(150): 268–275.
Библиографическая ссылка Paulson, E. 1964. A sequential procedure for selecting the population with the largest mean from K normal populations. Ann. Math. Statist., 35(150): 174–180.
Библиографическая ссылка Paulson, E. 1967. Sequential procedures for selecting the best one of several binomial populations. Ann. Math. Statist, 38(150): 117–123.
Библиографическая ссылка Paulson, E. 1969. A new sequential procedure for selecting the best one of K binomial populations. Ann. Math. Statist, 40(150): 1865–1866. Abstract
Библиографическая ссылка Ramey, T.R. and Alam, K. 1979. A sequential procedure for selecting the most probable multinominal event. Biometrika, 40(150): 171–173.
Библиографическая ссылка Randels, R.H. 1970. Some robust selection procedures. Ann. Math. Statist, 41(150): 1640–1645.
Библиографическая ссылка Rizvi, M.H. and Woodworth, G.G. 1970. On selection procedures based on ranks: counter examples concerning the least favorable configurations. Ann. Math. Statist, 41(150): 1942–1951.
Библиографическая ссылка Robbins, H., Sobel, M. and Starr, N. 1968. A sequential procedure for selecting the best of K populations. Ann. Math. Statist, 39(150): 88–92.
Библиографическая ссылка Stein, C. 1948. The selection of the largest of a number of means Abstract. Ann. Math. Statist, 19(150): 1–429.
Библиографическая ссылка Trawinski, B.J. and David, H.A. 1963. Selection of the best treatment in a paired comparison experiment. Ann. Math. Statist, 34(150): 75–91.

Скрыть метаданые