Автор |
Alam, Khursheed |
Автор |
Kulasekera, K.B. |
Дата выпуска |
1993 |
dc.description |
There are given k stochastically ordered populations. A sequential sampling procedure (S) is proposed for selecting the population associated with the largest rank in the ordering. Observations are taken one at a time from each of the k populations. The procedure S allows for a specified maximum number (M) of observations to be taken from each population. The stage N at which the sampling is stopped depends on the choice of a parameter c. The choice of c is based on a trade-off between the expected number of observations and the probability of a correct selection (PCS). A table is given showing the values of c, the associated values of the PCS and the expected sample number, based on the asymptotic properties of S when M is large. Empirical results are given, based on a simulation study of the small sample properties of S. |
Формат |
application.pdf |
Издатель |
Marcel Dekker, Inc. |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Sequential Selection |
Тема |
Rank Statistics |
Тема |
Stochastic Ordering |
Название |
A nonparametric sequential selection procedure |
Тип |
research-article |
DOI |
10.1080/07474949308836286 |
Electronic ISSN |
1532-4176 |
Print ISSN |
0747-4946 |
Журнал |
Sequential Analysis |
Том |
12 |
Первая страница |
271 |
Последняя страница |
288 |
Аффилиация |
Alam, Khursheed; Department of Mathematical Sciences, Clemson University |
Аффилиация |
Kulasekera, K.B.; Department of Mathematical Sciences, Clemson University |
Выпуск |
3-4 |
Библиографическая ссылка |
Alam, K. 1971. On selecting the most probable category. Technometrics, 13: 843–850. |
Библиографическая ссылка |
Alam, K. and Thompson, J.R. 1971. A selection procedure based on ranks. Ann. Inst. Stat. Math., 23: 253–262. |
Библиографическая ссылка |
Alam, K. and Rizvi, M.H. 1989. A selection procedure based on rank order Statistics. The IMS Bulletin, 18(3) |
Библиографическая ссылка |
Alam, K., Seo, K. and Thompson, J.R. 1971. A sequential sampling rule for selecting the most probable multinomial event. Ann. Inst. Stat. Math., 23(3): 65–374. |
Библиографическая ссылка |
Bartlett, N.S. and Govindarajulu, Z. 1968. Some distribution-free statistics and their application to the selection problem. Ann. Inst. Stat. Math., 20(3): 79–97. |
Библиографическая ссылка |
Bechhofer, R.E. 1958. A sequential multiple decision procedure for selecting the best one of several normal populations with a common known variance and various experimental designs. Biometrics, 14(3): 408–429. |
Библиографическая ссылка |
Bechhofer, R.E. 1970. An undersirable feture of a sequential multiple-decision procedure for selecting the best one of several normal populations with a common known variance. Biometrics, 26(3): 346–349. Correction Note |
Библиографическая ссылка |
Bechhofer, R.E. and Goldsman, D.M. 1987. Truncation of the Bechhofer-Kiefer-Sobel sequential procedure for selecting the normal population which has the largest mean. Comm. Statist. Simulation Comput., 16(3): 1067–1092. |
Библиографическая ссылка |
Bechhofer, R.E. and Goldsman, D.M. 1987. “Sequential selection procedures for multi- factor experiments involving Koopman-Darmois populations with additivity”. In Statistical Decision Theory and Related Topics - IV, Edited by: Gupta, S.S. and Berger, J.O. Vol. 2, 3–22. New York: Springer-Verlag. |
Библиографическая ссылка |
Bechhofer, R.E. and Goldsman, D.M. 1988. Truncation of the Bechhofer-Kiefer-Sobel sequential procedure for selecting the normal population which has the largest mean (II):2-factor experiments with no interaction. Comm. Statist. Simulation Comput., 17: 103–128. |
Библиографическая ссылка |
Bechhofer, R.E., Kiefer, J. and Sobel, M. 1968. Sequential Identification and ranking procedures, University of Chicago Press. |
Библиографическая ссылка |
Kulkarni, R.V. 1982. On the performance characteristics of a closed adaptive sequential procedure for selecting the best Bernoulli population. Sequential Anal., 1: 315–354. |
Библиографическая ссылка |
Bechhofer, R.E. and Kulkarni, R.V. 1982. “Closed adaptive sequential procedures forselecting the best of k > 2 Bernoulli populations”. In Statistical Decision Theory and Related Topics - III, Edited by: Gupta, S.S. and Berger, J.O. Vol. 1, 61–108. New YOrk: Academic Press. |
Библиографическая ссылка |
Billingseley, P. 1968. Convergence of Probability Measures, New York: Wiley. |
Библиографическая ссылка |
Buringer, H., Martin, H. and Schriever, K.H. Nonparametric Sequential Selection Procedures |
Библиографическая ссылка |
Cacoullos, T. and Sobel, M. 1966. “An inverse sampling procedure for selecting the most probable event in a multinomial distribution”. In Multivariate Analysis, Edited by: Krishnaiah, P.R. 423–455. New York: Academic. |
Библиографическая ссылка |
Donsker, M. 1951. An invariance principle for certain probability limit theorems. Mem. Amer. Math. Soc., 6 |
Библиографическая ссылка |
Ghosh, M. 1973. Nonparametric Selection procedures for symmetric location parameter populations. Ann. Statist, 1: 773–779. |
Библиографическая ссылка |
Gupta, S.S. and Mc Donald, G.C. 1970. “On some classes of selection procedures based on ranks”. In Nonparametric Techniques in Statistical Inference, Edited by: Puri, M.L. 491–514. London: Cambridge University Press. |
Библиографическая ссылка |
Gupta, S.S. and Panchapakesan, S. 1979. Multiple Decision Procedures: Theory and Methodology of Selecting and Ranking Populations, New York: John Wiley & Sons. |
Библиографическая ссылка |
Jennison, C. 1983. Equal probability of correct selection for Bernoulli selection procedures. Comm. Statist. Theory Methods, 12: 2887–2896. |
Библиографическая ссылка |
Jennison, C. and Kulkarni, R.V. 1984. “Optimal procedures for selecting the best s outof k Bernoulli populations”. In Design of Experiments Ranking and Selection, Edited by: Santner, T.J. and Tamhane, A.C. 113–125. New York: Marcel Dekker. |
Библиографическая ссылка |
Kao, S.C. and Lai, T.L. 1980. Sequential selection procedures based on confidence sequences for normal populations. Comm. Statist. A-Theory Methods, 9: 1657–1676. |
Библиографическая ссылка |
Lehmann, E.L. 1963. A class of selection procedures based on ranks. Math. Ann, 9(150): 268–275. |
Библиографическая ссылка |
Paulson, E. 1964. A sequential procedure for selecting the population with the largest mean from K normal populations. Ann. Math. Statist., 35(150): 174–180. |
Библиографическая ссылка |
Paulson, E. 1967. Sequential procedures for selecting the best one of several binomial populations. Ann. Math. Statist, 38(150): 117–123. |
Библиографическая ссылка |
Paulson, E. 1969. A new sequential procedure for selecting the best one of K binomial populations. Ann. Math. Statist, 40(150): 1865–1866. Abstract |
Библиографическая ссылка |
Ramey, T.R. and Alam, K. 1979. A sequential procedure for selecting the most probable multinominal event. Biometrika, 40(150): 171–173. |
Библиографическая ссылка |
Randels, R.H. 1970. Some robust selection procedures. Ann. Math. Statist, 41(150): 1640–1645. |
Библиографическая ссылка |
Rizvi, M.H. and Woodworth, G.G. 1970. On selection procedures based on ranks: counter examples concerning the least favorable configurations. Ann. Math. Statist, 41(150): 1942–1951. |
Библиографическая ссылка |
Robbins, H., Sobel, M. and Starr, N. 1968. A sequential procedure for selecting the best of K populations. Ann. Math. Statist, 39(150): 88–92. |
Библиографическая ссылка |
Stein, C. 1948. The selection of the largest of a number of means Abstract. Ann. Math. Statist, 19(150): 1–429. |
Библиографическая ссылка |
Trawinski, B.J. and David, H.A. 1963. Selection of the best treatment in a paired comparison experiment. Ann. Math. Statist, 34(150): 75–91. |