Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Bhattacharya, P.K.
Автор Zhou, Hong
Дата выпуска 1996
dc.description A generalized CUSUM procedure is constructed for sequential detection of a specified amount of change within a multi-parameter family of distributions when the initial value of the parameter is unknown. The stopping time of the procedure is defined on a doubly-indexed stochastic process whose asymptotics are studied in terms of its weak convergence properties when there is no change and when there is a contiguous change. Analogous results are also obtained for the Page-CUSUM procedure with known initial parameter. To account for misspecification of models, the results are derived for the case when the procedures are based on a form of distribution which is different from the true one. It is seen how the drift term which sets in after a change occurs, and drives the underlying stochastic process towards the decision boundary, slows down under model misspecification for both the Page-CUSUM and the generalized CUSUM procedures.
Формат application.pdf
Издатель Marcel Dekker, Inc.
Копирайт Copyright Taylor and Francis Group, LLC
Тема Cusum
Тема change-point
Тема sequential detection
Название A generalized cusum procedure for sequential detection of change-point in a parametric family when the initial parameter is unknown
Тип research-article
DOI 10.1080/07474949608836367
Electronic ISSN 1532-4176
Print ISSN 0747-4946
Журнал Sequential Analysis
Том 15
Первая страница 311
Последняя страница 325
Аффилиация Bhattacharya, P.K.; Division of Statistics, University of California
Аффилиация Zhou, Hong; Division of Statistics, University of California
Выпуск 4
Библиографическая ссылка Cramer, H. 1951. Mathematical Methods of Statistics, Princeton: Princeton University Press.
Библиографическая ссылка Huber, P.J. The behavior of maximum likelihood estimates under non- standard conditions. Proc. Fifth Berkeley Symp. on Math. Statist. Probab. pp.221–233.
Библиографическая ссылка Lehmann, E.L. 1983. Theory of Point Estimation, Wiley.
Библиографическая ссылка Lorden, G. 1971. Procedures for reacting to a change in distribution. Ann. Math. Statist., 42: 1897–1908.
Библиографическая ссылка Moustakides, G.V. 1986. Optimal stopping times for detecting changes in distribution. Ann. Statist., 14: 1379–1387.
Библиографическая ссылка Page, E.S. 1954. Continuous inspection schemes. Biometrika, 41: 100–115.
Библиографическая ссылка Pollak, M. and Siegmund, D. 1991. Sequential detection of change in a normal mean when the initial value is unknown. Ann. Statist., 19: 394–416.

Скрыть метаданые