Автор |
Bhattacharya, P.K. |
Автор |
Zhou, Hong |
Дата выпуска |
1996 |
dc.description |
A generalized CUSUM procedure is constructed for sequential detection of a specified amount of change within a multi-parameter family of distributions when the initial value of the parameter is unknown. The stopping time of the procedure is defined on a doubly-indexed stochastic process whose asymptotics are studied in terms of its weak convergence properties when there is no change and when there is a contiguous change. Analogous results are also obtained for the Page-CUSUM procedure with known initial parameter. To account for misspecification of models, the results are derived for the case when the procedures are based on a form of distribution which is different from the true one. It is seen how the drift term which sets in after a change occurs, and drives the underlying stochastic process towards the decision boundary, slows down under model misspecification for both the Page-CUSUM and the generalized CUSUM procedures. |
Формат |
application.pdf |
Издатель |
Marcel Dekker, Inc. |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
Cusum |
Тема |
change-point |
Тема |
sequential detection |
Название |
A generalized cusum procedure for sequential detection of change-point in a parametric family when the initial parameter is unknown |
Тип |
research-article |
DOI |
10.1080/07474949608836367 |
Electronic ISSN |
1532-4176 |
Print ISSN |
0747-4946 |
Журнал |
Sequential Analysis |
Том |
15 |
Первая страница |
311 |
Последняя страница |
325 |
Аффилиация |
Bhattacharya, P.K.; Division of Statistics, University of California |
Аффилиация |
Zhou, Hong; Division of Statistics, University of California |
Выпуск |
4 |
Библиографическая ссылка |
Cramer, H. 1951. Mathematical Methods of Statistics, Princeton: Princeton University Press. |
Библиографическая ссылка |
Huber, P.J. The behavior of maximum likelihood estimates under non- standard conditions. Proc. Fifth Berkeley Symp. on Math. Statist. Probab. pp.221–233. |
Библиографическая ссылка |
Lehmann, E.L. 1983. Theory of Point Estimation, Wiley. |
Библиографическая ссылка |
Lorden, G. 1971. Procedures for reacting to a change in distribution. Ann. Math. Statist., 42: 1897–1908. |
Библиографическая ссылка |
Moustakides, G.V. 1986. Optimal stopping times for detecting changes in distribution. Ann. Statist., 14: 1379–1387. |
Библиографическая ссылка |
Page, E.S. 1954. Continuous inspection schemes. Biometrika, 41: 100–115. |
Библиографическая ссылка |
Pollak, M. and Siegmund, D. 1991. Sequential detection of change in a normal mean when the initial value is unknown. Ann. Statist., 19: 394–416. |