Автор |
Sehwertman, Neil C. |
Автор |
Huseby, John R. |
Автор |
Allen, David M. |
Дата выпуска |
1980 |
dc.description |
Multivariate analysis is difficult when there are missing observations in the response vectors. Kleinbaum (1973) proposed a Wald statistic useful in the analysis of incomplete multivariate data. SUBROUTINE C0EF calculates the estimated parameter matrix g in the generalization of the Potthoff-Roy (1964) growth curve model proposed by Kleinbaum (1973). SUBROUTINE WALD calculates the Wald statistic for hypotheses of the form Hn: H 5 D = 0 as proposed by Kleinbaum (1973). |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
growth curve |
Тема |
repeated measures |
Тема |
missing data |
Тема |
multivariate |
Тема |
wald statistics |
Тема |
generalized growth curve model |
Название |
Computation of the estimated parameters and wald statistic for the generalized growth curve model |
Тип |
research-article |
DOI |
10.1080/03610918008812185 |
Electronic ISSN |
1532-4141 |
Print ISSN |
0361-0918 |
Журнал |
Communications in Statistics - Simulation and Computation |
Том |
9 |
Первая страница |
675 |
Последняя страница |
693 |
Аффилиация |
Sehwertman, Neil C.; California State University |
Аффилиация |
Huseby, John R.; Central Oregon College |
Аффилиация |
Allen, David M.; University of Kentucky |
Выпуск |
6 |
Библиографическая ссылка |
Kleinbaum, D.G. 1973. A generalization of the growth curve model. J. Multivariate Analysis, 3: 102–116. |
Библиографическая ссылка |
Potthoff, R.F. and Roy, S.M. 1964. A generalized multivariate analysis of variance model useful especially for growth curve problems. Biometrika, 51: 313–26. |
Библиографическая ссылка |
Searle, S.R. 1971. Linear Models, New York: John Wiley & Sons. |
Библиографическая ссылка |
Sparks, D.N. and Todd, A.D. 1973. Algorithm AS 60 Latent roots and vectors of a symmetric matrix. Applied Statistics, 22: 260–265. |