Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Swain, James J.
Дата выпуска 1988
dc.description A Monte Carlo control variate method is used to study the estimators obtained in nonlinear regression under nonnormal error distributions. Two forms of the standard linear approximator are used as the control variates: a natural approximator using the nonnormal errors sampled, and a normalized approximator obtained by transformation of the errors. The natural approximator is shown to be most effective when the sampling distribution is itself nonnormal; its effectiveness is well approximated by a function of the Beale measure of nonlinearity. The normalized approximator is most effective when the estimator sampling distribution is approximately normal. A one-parameter model is used for illustration with uniform and gamma distributed errors
Формат application.pdf
Издатель Marcel Dekker, Inc.
Копирайт Copyright Taylor and Francis Group, LLC
Тема control variates
Тема nonlinear estimation
Тема simulation swindle
Тема variance reduction
Название Control variates for monte carlo analysis of nonlinear statisticalmodels. IV
Тип research-article
DOI 10.1080/03610918808812660
Electronic ISSN 1532-4141
Print ISSN 0361-0918
Журнал Communications in Statistics - Simulation and Computation
Том 17
Первая страница 251
Последняя страница 274
Аффилиация Swain, James J.; Industrial and Systems Engineering, Georiga Institute of Technology
Выпуск 1
Библиографическая ссылка Bates, D.M. and Watts, D.G. 1980. Relative Curvature Measures of Nonlinearity. Journal of the Royal Statistical Society, 42(1): 1–25.
Библиографическая ссылка Beale, E.M.L. 1960. Confidence Regions in Non-Linear Estimation. Confidence Regions in Non-Linear Estimation, 22(1): 41–88.
Библиографическая ссылка Box, M.J. 1971. Bias in Nonlinear Estimation. Journal of the Royal Statistical Societ, 33(1): 171–201.
Библиографическая ссылка Clarke, G.P.Y. 1980. Moments of the Least Squares Estimators in a Non-linear Regression Model. Journal of the Royal Statistical Society, 12(2): 227–237.
Библиографическая ссылка Gallant. 1987. Nonlinear Statistical Model, New York, NY: Wiley.
Библиографическая ссылка Gillis, P.R. 1978. The Behaviour of Estimators of the Parameters of Various Yield-Density Relationships. Biometrics, 34: 91
Библиографическая ссылка 1980. IMSL Library, Houston, TX: International Mathematical and Statistical Libraries.
Библиографическая ссылка Ratkowsky, D.A. 1983. Nonlinear Regressoon Modeling, New York, NY: Marcel Dekker.
Библиографическая ссылка Swain, J.J. 1982. “Monte Carlo Estimation of the Sampling Distribution of Nonlinear Parameter Estimators." Unpublished Ph.D. Thesis”. In School of Industrial Engineering, Unpublished Ph.D. Thesis. Purdue University, W. Lafayette. IN

Скрыть метаданые