Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Paik, U. B.
Автор Federer, W. T.
Дата выпуска 1977
dc.description This paper is concerned with the application of the Properties A and B associated with the incidence matrix to the analysis of Partially Balanced Designs having Binary Number Association Scheme (BNAS) or Balanced Factorial Experiments (BFE). We present a practical method of intra-and inter-block analysis of Partially Balanced Block Designs (PBBD) having BNAS. All group divisible association scheme designs, rectangular association scheme designs, hierarchical group divisible block designs, and direct product designs are BNAS PBB designs. The method presented in this paper will unify and simplify the calculations for the above various designs when compared with presently available procedures. Also, we extend the method to the PAB type rectangular designs. The various computational steps in the statistical analysis are presented with numerical examples.
Формат application.pdf
Издатель Marcel Dekker, Inc.
Копирайт Copyright Taylor and Francis Group, LLC
Тема calculus of factorials
Тема recovery of interblock information
Тема recovery of row and column information
Тема hierarchical group divisible designs
Тема rectangular association scheme
Тема balanced factorial experiment
Название Analysis of binary number association scheme partially balanced designs
Тип research-article
DOI 10.1080/03610927708827541
Electronic ISSN 1532-415X
Print ISSN 0361-0926
Журнал Communications in Statistics - Theory and Methods
Том 6
Первая страница 895
Последняя страница 931
Аффилиация Paik, U. B.; Korea University
Аффилиация Federer, W. T.; Cornell University
Выпуск 10
Библиографическая ссылка Federer, W. T. 1955. Experimental Design, Theory and Application, New York: The Macmillan Co..
Библиографическая ссылка Hinkelmann, K. 1964. Extended group divisible partially balanced incomplete block designs. Ann. Math. Statist., 35: 681–695.
Библиографическая ссылка Kshirsagar, A. M. 1957. On balancing in designs in which heterogeneity is eliminated in two directions. Calcutta Statist. Assoc. Bull., 7: 161–166.
Библиографическая ссылка Kshirsagar, A. M. 1966. Balanced factorial designs. J. R. Statist. Soc., B 28: 559–567.
Библиографическая ссылка Kurkjian, B. and Zelen, M. 1962. A calculus for factorial arrangements. Ann. Math. Statist., 33: 609–619.
Библиографическая ссылка Kurkjian, B. and Zelen, M. 1963. Applications of the calculus of factorial arrangements, I. Block and direct product designs. Biometrika, 50: 63–73.
Библиографическая ссылка Paik, U. B. and Federer, W. T. 1973a. On PA-type incomplete block designs and PAB-type rectangular designs. J. R. Statist. Soc., B 35: 245–251.
Библиографическая ссылка Paik, U. B. and Federer, W. T. 1973b. Partially balanced designs and properties A and B. Commun. Statist., 1: 331–350.
Библиографическая ссылка Paik, U. B. and Federer, W. T. 1974. Analysis of nonorthogonal n-way classifications. Ann. Statist., 2: 1000–1021.
Библиографическая ссылка Roy, P. M. 1953-4. Hierarchical group divisible incomplete block designs with m-associate classes. Sci. Culture, 19: 210–211.
Библиографическая ссылка Shah, B. V. 1958. On balancing in factorial experiments. Ann. Math. Statist., 29: 766–779.
Библиографическая ссылка Shah, B. V. 1960. Balanced factorial experiments. Ann. Math. Statist., 31: 502–514.
Библиографическая ссылка Tocher, K. D. 1952. The design and analysis of block experiments. J. R. Statist. Soc., B 14: 45–100.
Библиографическая ссылка Zelen, M. and Federer, W. T. 1964. Applications of the calculus for factorial arrangements. II. Two way elimination of heterogeneity. Ann. Math. Statist., 35: 658–672.
Библиографическая ссылка Zelen, M. and Federer, W. T. 1965. Applications of the calculus for factorial arrangements. III. Analysis of factorials with unequal numbers of observations. Sankhyā, A 27: 383–400.

Скрыть метаданые