Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Ullah, Aman
Автор Vinod, H.D.
Дата выпуска 1984
dc.description Shrinkage estimators often have a biasing parameter (saym k) and a non-stochastic shrinkage target (zero). Range of stochastic k values in which the mean squared error (MSE) of ordinary least squares estimator (OLS) is reduced is known and tabulated invinod and Ullah (1981, p. 218). This paper generalized these ranges for Bayesian and non-Bayesian estimators involving stochastic shrinkage targets. For example, the shrinkage target is the avarage of the regression coefficients in Lindley and Smith (1972) and Zellner and Vandaele (1975). Also included are results on Bayes-Almon estimator for the distributed lag models and certain iterative estimators. Interstingly, Lindley and Smith's iterative ridge estimator is shown to be no better than their first stage estimator.
Формат application.pdf
Издатель Marcel Dekker, Inc.
Копирайт Copyright Taylor and Francis Group, LLC
Тема regression
Тема biased
Тема ridge
Тема Stein-rule
Тема mean squared error matrix
Тема mean squared error matrix
Тема shrinkage toward stochastic target
Название Improvement ranges for shrinkage estimators with stochastic target
Тип research-article
DOI 10.1080/03610928408828676
Electronic ISSN 1532-415X
Print ISSN 0361-0926
Журнал Communications in Statistics - Theory and Methods
Том 13
Первая страница 207
Последняя страница 215
Аффилиация Ullah, Aman; University of Western Ontario
Аффилиация Vinod, H.D.; Fordham University
Выпуск 2
Библиографическая ссылка Kadane, J.B. 1971. Comparison of k-class estimators when the disturbances are small. Econometrica, : 723–738.
Библиографическая ссылка Lindley, D.V. and Smith, A.F.M. 1972. Bayes estimates for the linear model. Journal of the Royal Statistical Society, B: 1–41. with discussion
Библиографическая ссылка Maddala, G.S. 1977. Econometrics, New York: McGraw-Hill.
Библиографическая ссылка Rao, C.R. 1973. Linear Statistical Inference and its Application, New York: John Wiley and Sons.
Библиографическая ссылка Ullah, A. and Raj, B. 1980. A polynomial distributed lag model with stochastic coefficients and priors, Empirical Economics.
Библиографическая ссылка Vinod, H.D. and A., Ullah. 1981. Recent Advances in Regression Methods, New York: Marcel Dekker.
Библиографическая ссылка Zellner, A. and Vandaele, W. 1975. “Bayes-Stein estimators for k-means regression and simultaneous equation models”. In Studies in Bayesian Econometrics and Statistics, Edited by: Fienberg, S.E. and Zellner, A. Amsterdam: North-Holland Publishing.

Скрыть метаданые