Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Keating, Jerome P.
Автор Mason, Robert L.
Дата выпуска 1988
dc.description In this article we consider a town in which the thoroughfares are laid out in a rectangular grid. Using the l<sub>1</sub> metric, we determine the Dirichlet regions for competitive convenience stores. Under the assumption of normality, we exemplify a technique for calculating the probability of the Dirichlet region associated with each convenience store. This method is generalized to the case where intersecting thoroughfares are oblique. Finally the example is used to illustrate the calculation of posterior Pitman's measure of closeness for various Bayesian estimators.
Формат application.pdf
Издатель Marcel Dekker, Inc.
Копирайт Copyright Taylor and Francis Group, LLC
Тема Pitman's measure of closeness
Тема Bayesian estimators
Тема Dirichlet Regions
Название Preference regions and their probabilities based on a rectangular grid
Тип research-article
DOI 10.1080/03610928808829726
Electronic ISSN 1532-415X
Print ISSN 0361-0926
Журнал Communications in Statistics - Theory and Methods
Том 17
Первая страница 1973
Последняя страница 1983
Аффилиация Keating, Jerome P.; Division of Mathematics, The University of Texas at Sae Antonio
Аффилиация Mason, Robert L.; Fuels and Lubricants Division, Southwest Research Institute
Выпуск 6
Библиографическая ссылка Busemann, H. 1941. On Leibnitz's Definition of Planes. American Journal of Mathematics, 63: 101–111.
Библиографическая ссылка Farebrother, R.W. 1986. Pitman's Measure of Closeness. The American Statistician, 40: 179–180.
Библиографическая ссылка Keating, J.P. and Mason, R.L. 1985. Practical Relevance of an Alternative Criterion in Estimation. The American Statistician, 39: 203–205.
Библиографическая ссылка Keating, J.P. and Mason, R.L. 1986. Reply to "Pitman's Measure of Closeness. The American Statistician, 40: 180–181.
Библиографическая ссылка Owen, D.B. 1956. Tables for Computing Bivariate Normal Probabilities. Annals of Mathematical Statistics, 27: 1075–1090.
Библиографическая ссылка Pitman, E.J.G. 1937. The Closest Estimates of Statistical Parameters. Proceedings of the Cambridge Philosophical Society, 33: 212–222.
Библиографическая ссылка Shreider, Y.A. 1974. What is Distance, Chicago: The University of Chicago Press.

Скрыть метаданые