Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Norris, lll, James L.
Автор Meeter, Duane A.
Дата выпуска 1992
dc.description Under both simple random sampling and stratified random sampling from a study region, we develop a Bayesian, asymptotic lower limit for the expected number of the region's classes that are not observed in the sample. In practical applications, the classes might be species in a forest or types of defects in a product line. The aforementioned lower limit is extremely robust to the prior on θ, the total number of classes in the region. We also consider a potential lower limit for θ. Both the lower limit on the expected number of unobserved classes and the lower limit on θ were conservative in our simulations.
Формат application.pdf
Издатель Marcel Dekker, Inc.
Копирайт Copyright Taylor and Francis Group, LLC
Тема Bayesian methods
Тема asymptotic distribution
Тема stratified random sampling
Тема robustness
Название A robust bayesian lower limit for the expected number of unobserved classes
Тип research-article
DOI 10.1080/03610929308831007
Electronic ISSN 1532-415X
Print ISSN 0361-0926
Журнал Communications in Statistics - Theory and Methods
Том 22
Первая страница 81
Последняя страница 95
Аффилиация Norris, lll, James L.; Department of Mathematics and Computer Science, Wake Forest University
Аффилиация Meeter, Duane A.; Department of Statistics, Florida State University
Выпуск 1
Библиографическая ссылка Boender, C. G. E. and Rinnooy Kan, A. H. G. 1983. A Bayesian analysis of the number of cells of a multinomial distribution. The Statistician, 32: 240–248.
Библиографическая ссылка Brainerd, B. 1982. On the relation between the type-token and species-area problems. Journal of Applied Probability, 19: 785–793.
Библиографическая ссылка Burnham, K. P. and Overton, W. S. 1978. Estimation of a closed population when probabilities vary among animals. Biometrika, 65: 625–633.
Библиографическая ссылка Carothers, A. D. 1973. Capture-recapture methods applied to a population with known parameters. The Journal of Animal Ecology, 42: 125–146.
Библиографическая ссылка Chao, A. 1984. Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11: 265–270.
Библиографическая ссылка Chung, K. L. 1974. A Course in Probability Theory, Orlando, FL: Academic Press, Inc..
Библиографическая ссылка Efron, B. and Thisted, R. 1976. Estimating the number of unseen species: how many words did Shakespeare know. Biometrika, 63: 435–447.
Библиографическая ссылка Fisher, R. A., Corbet, A. S. and Williams, C. B. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12: 42–58.
Библиографическая ссылка Geisser, S. 1984. On prior distributions for binary trials. American Statistician, 38: 244–251.
Библиографическая ссылка Harris, B. 1959. Determining bounds on integrals with applications to cataloging problems. Annals of Mathematical Statistics, 30: 521–548.
Библиографическая ссылка Lewins, W. A. and Joanes, D. N. 1984. Bayesian estimation of the number of species. Biometrics, 40: 323–328.
Библиографическая ссылка Livingston, R. J. 1987. Field sampling in estuaries: the relationship of scale to variability. Estuaries, 10: 194–207.
Библиографическая ссылка Norris, J. L. and Meeter, D. A. 1990. “Sampling design for observing species”. In Department of Statistics Technical Report, Tallahassee, FL: Florida State University.
Библиографическая ссылка Serfling, R. J. 1980. Approximation Theorems of Mathematical Statistics, New York: John Wiley.

Скрыть метаданые