Автор |
Wang, P.K. |
Дата выпуска |
1984 |
dc.description |
AbstractThe Eulerian variational principle in a rotating coordinate system is briefly reviewed. It is shown that the principle leads to the equation of motion of adiabatic flow of an inviscid fluid including Coriolis force. This principle can be used for studying atmospheric motions. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
A brief review of the Eulerian variational principle for atmospheric motions in rotating coordinates: Research note |
Тип |
research-article |
DOI |
10.1080/07055900.1984.9649207 |
Electronic ISSN |
1480-9214 |
Print ISSN |
0705-5900 |
Журнал |
Atmosphere-Ocean |
Том |
22 |
Первая страница |
387 |
Последняя страница |
392 |
Аффилиация |
Wang, P.K.; Department of Meteorology, University of Wisconsin |
Выпуск |
3 |
Библиографическая ссылка |
Bretherton, F.P. 1970. A note on Hamilton's principle for perfect fluids. J. Fluid Mech., 44: 19–31. |
Библиографическая ссылка |
Eckart, C. 1960. Variational principles of hydrodynamics. Phys. Fluids, 3: 421–429. |
Библиографическая ссылка |
Finlayson, B.A. 1972. Existence of variational principles for the Navier—Stokes equation. Phys. Fluids, 15: 963–967. |
Библиографическая ссылка |
Glansdorff, P. and Prigogine, I. 1964. On a general evolution criterion in macroscopic physics. Physica, 30: 331–374. |
Библиографическая ссылка |
Herivel, J.W. 1955. The derivation of the equations of motion of an ideal fluid by Hamilton's principle. Proc. Comb. Phil. Soc., 51: 344–349. |
Библиографическая ссылка |
Holton, J.R. 1972. An Introduction to Dynamical Meteorology, 319New York: Academic Press. |
Библиографическая ссылка |
Lin, C.C. Hydrodynamics of Helium II. Proc. Int. School Phys., Varenna, Course XXI. pp.93–146. Academic Press. |
Библиографическая ссылка |
Mobbs, S.D. 1982. Variational principles for perfect and dissipative fluid flows. Proc. R. Soc. London, A381: 457–468. |
Библиографическая ссылка |
Salmon, R. 1983. Practical use of Hamilton's principle. J. Fluid Mech., 132: 431–444. |
Библиографическая ссылка |
Seliger, R.L. and Whitham, G.B. 1968. Variational principles in continuum mechanics. Proc. R. Soc. London, A305: 1–25. |
Библиографическая ссылка |
Serrín, J. 1959. “Mathematical principles of classical fluid mechanics”. In Handbuch der Physik, Vol. VIII, 125–263. Springer. Pt 1 |