Автор |
Weisz, Juan F. |
Дата выпуска |
1994 |
dc.description |
The representation of integers in factorial representation is generalized to the case of any real number. The result is a powerful method for number representation in which it is easy to represent both very large and very small numbers. The system uses an indefinite number of symbols. The case of integers represents a natural numbering system for combinatorial purposes and a systematic method for the generation of permutations is given. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
Real numbers in factorial representation |
Тип |
research-article |
DOI |
10.1080/0020739940250104 |
Electronic ISSN |
1464-5211 |
Print ISSN |
0020-739X |
Журнал |
International Journal of Mathematical Education in Science and Technology |
Том |
25 |
Первая страница |
25 |
Последняя страница |
29 |
Аффилиация |
Weisz, Juan F.; Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Desarrollo Tecnológico para la Industria Química, Universidad Nacional del Litoral |
Выпуск |
1 |
Библиографическая ссылка |
Lehmer, D. H. 1964. “The machine tools of combinatorics”. In Applied Combinatorial Mathematics, Edited by: Beckenbach, Edwin F. New York, London, Sydney: Wiley Ch. 1.. University of California, Engineering and Physical Sciences Extension Series |
Библиографическая ссылка |
Lehmer, D. H. 1960. Proceedings Fourth Canadian Mathematical Congress, 1957, 160–173. Toronto: University of Toronto Press. |
Библиографическая ссылка |
This is a well known theorem found in any good textbook of combinatorial mathematics |
Библиографическая ссылка |
Tonkins‐Paige, M., Hall, D. N., Lehmer, M. B., Wells, S. M. and Johnson. are mentioned in reference 1 The methods of |
Библиографическая ссылка |
Knuth, D. E. 1973. The Art of Computer Programming, vol. 1, , second edn, Reading, Massachusetts: Addison‐Wesley. Ch. 1 |