Автор |
Jacobson, D. H. |
Дата выпуска |
1976 |
dc.description |
ABSTRACTA generalization is given of Finsler's theorem on the positivity of a quadratic form subject to a quadratic equality. The generalized result is, under a certain assumption, a set of necessary and sufficient conditions for non-negativity of a quadratic form subject to an arbitrary number of quadratic inequality and equality constraints. Certain properties of matrix inverses are deduced using the conditions. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
10E25 |
Тема |
15A24 |
Тема |
15A63 |
Тема |
90C30 |
Название |
A GENERALIZATION OF FINSLER'S THEOREM FOR QUADRATIC INEQUALITIES AND EQUALITIES |
Тип |
research-article |
DOI |
10.1080/16073606.1976.9632513 |
Electronic ISSN |
1727-933X |
Print ISSN |
1607-3606 |
Журнал |
Quaestiones Mathematicae |
Том |
1 |
Первая страница |
19 |
Последняя страница |
28 |
Аффилиация |
Jacobson, D. H.; National Research Institute for Mathematical Sciences |
Выпуск |
1 |
Библиографическая ссылка |
Bellman, R. E. 1976. Introduction to Matrix Analysis New York: McGraw Hill. |
Библиографическая ссылка |
Diananda, P. H. 1962. On Non-Negative Forms in Real Variables Some or all of which are Non-Negative. Proc. Camb. Phil. Soc., 58: 17–25. |
Библиографическая ссылка |
Finsler, P. 1937. Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen.. Commentarii Mathe=matici Helvetici, 9: 188–192. |
Библиографическая ссылка |
Gaddum, J. W. 1958. Linear Inequalities and Quadratic Forms.. Pacific J. Math., 8: 411–414. |
Библиографическая ссылка |
Mangasarian, O. 1969. Nonlinear Programming. New York: McGraw-Hill. |