Автор |
Wells, G. S. |
Дата выпуска |
1977 |
dc.description |
AbstractJohn Mather has proved that infinitesimal stability implies stability for proper maps in the category of smooth manifolds. This result gives a computable algebraic criterion for stability. In this paper it is shown that there is an extension of Mather's result when the range is only assumed to be a compact semianalytic set of some real Euclidean space—this class of spaces is an obvious maximal candidate for which computations can be carried out using only classical polynomial algebra. The proof depends on a splitting theorem for the restriction map from the smooth functions on a Euclidean space to those on a closed subset and is proved by an algebraic-geometric method derived from the work of B. Malgrange. No knowledge of functional analysis is assumed although an alternative analytic method for proving the main result is also indicated. Only simple applications are given (mostly to functions defined locally in the neighbourhood of an isolated hypersurface singularity of the type studied by J. Milnor and others) since the author intends to publish a fairly comprehensive study of stability (smooth and C°) of smooth maps on closed semianalytic sets. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
58C25 |
Название |
A GEOMETRIC SPLITTING AND THE C∞ STABILITY OF MAPS FROM SEMIANALYTIC SETS |
Тип |
research-article |
DOI |
10.1080/16073606.1977.9632556 |
Electronic ISSN |
1727-933X |
Print ISSN |
1607-3606 |
Журнал |
Quaestiones Mathematicae |
Том |
2 |
Первая страница |
383 |
Последняя страница |
399 |
Аффилиация |
Wells, G. S.; University of the Witwatersrand |
Выпуск |
1-3 |
Библиографическая ссылка |
Dunford, N. and Schwartz, J. T. 1958. Linear Operators (part 1) New York: Wiley-Interscience. |
Библиографическая ссылка |
Lojasiewicz, S. 1965. Ensembles semianalytiques, Notes Paris: Inst. Hautes Etudes Sci.. |
Библиографическая ссылка |
Malgrange, B. 1966. Ideals of differentiable functions Oxford Univ. Press. |
Библиографическая ссылка |
Mather, J. N. 1969. Stability of C∞ mappings, II: Infinitesimal stability implies stability, Ann.. Math., 89: 254–291. |
Библиографическая ссылка |
Mather, J. N. Differentiable invariants to appear |
Библиографическая ссылка |
Milnor, J. 1968. Singular points of complex hypersurfaces, Annals of Mathematics Studies 61, Princeton |
Библиографическая ссылка |
Poenaru, V. 1975. Stability of equivariant smooth maps, Bull.. Amer. Math. Soc., 81: 1125–1127. |
Библиографическая ссылка |
Poenaru, V. 1972. Singularités C infini en présence de symétrie, Lecture Notes in Math. 510 Berlin-Heidelberg-New York: Springer-Verlag. |
Библиографическая ссылка |
Tougeron, J.-C1. 1912. Idéaux de fonctions différentiables Berlin-Heidelberg-New York: Springer-Verlag. |
Библиографическая ссылка |
Wells, G. S. 1975. Stability of smooth-functions invariant under a compact lie group, Proc.. S. Afr. Math. Soc., 5: 273–275. |
Библиографическая ссылка |
Wells, G. S. Extension theorems for smooth functions on real analytic sets and quotients by lie groups, to appear. Proc. Austral. Math. Soc., |
Библиографическая ссылка |
Wells, G. S. 1977. Spaces of smooth functions on analytic sets, Bull.. Amer. Math. Soc., 83: 276–278. |
Библиографическая ссылка |
Wells, G. S. Immersions of semianalytic sets preprint |
Библиографическая ссылка |
Wells, G. S. Stability of smooth mappings from semi-analytic sets of finite type preprint |