Автор |
Everitt, W. N. |
Дата выпуска |
1978 |
dc.description |
1. This note is concerned with inequalities of the form(1.1)where the open interval (a,b) of integration may be bounded or unbounded, i.e. −∞ ⋚ a ⋚ b ⋚ ∞, the coefficients p, q and w are real-valued on (a,b), w is non-negative, M is the symmetric differential expression(1.2)and η is the largest linear manifold of real-valued functions on (a,b), so chosen that the integrals on the right-hand side are both finite. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
A GENERAL INTEGRAL INEQUALITY ASSOCIATED WITH CERTAIN ORDINARY DIFFERENTIAL OPERATORS |
Тип |
research-article |
DOI |
10.1080/16073606.1978.9631547 |
Electronic ISSN |
1727-933X |
Print ISSN |
1607-3606 |
Журнал |
Quaestiones Mathematicae |
Том |
2 |
Первая страница |
479 |
Последняя страница |
494 |
Аффилиация |
Everitt, W. N.; Department of Mathematics, The University |
Выпуск |
4 |
Библиографическая ссылка |
Atkinson, F. V. 1975. ‘Limit-n criteria of integral type’. Proc. Royal Soc. Edinburgh (A), 73: 167–198. |
Библиографическая ссылка |
Brinck, I. 1959. ‘Self-adjointness and spectra of Sturm-Liouville operators’. Math. Scand., 7: 219–39. |
Библиографическая ссылка |
Chaudhuri, Jyoti and Everitt, W. N. 1969. ‘On the spectrum of ordinary second-order differential operators’. Proc. Royal Soc. Edinburgh (A), 68: 95–119. |
Библиографическая ссылка |
Evans, W. D. 1976. ‘On limit-point and Dirichlet-type results for second-order differential expressions’. Lecture Notes in Mathematics (Springer-Verlag, Berlin), 564: 78–92. |
Библиографическая ссылка |
Everitt, W. N. 1975. “‘On the strong limit-point condition of second-order differential expressions’”. In Proceedings of the International Conference on Differential Equations 1974 287–307. New York: Academic Press. |
Библиографическая ссылка |
Everitt, W. N. 1976. “‘A note on the Dirichlet condition for second-order differential expressions’”. In Canadian J. Math. Vol. XXXVIII, 312–320. |
Библиографическая ссылка |
Everitt, W. N. ‘On a result of Brinck in the limit-point theory of second-order differential expressions; (to appear in Proc. Royal Soc. Edinburgh)’ |
Библиографическая ссылка |
Everitt, W. N. ‘A note on an integral inequality’ Quaestiones Mathematicae this issue. |
Библиографическая ссылка |
Everitt, W. N. and Giertz, M. 1971. ‘Some properties of the domains of certain differential operators’. Proc. London Math. Soc. (3), 23: 301–324. |
Библиографическая ссылка |
Everitt, W. N., Giertz, M. and McLeod, J. B. 1974. ‘On the strong and weak limit-point classification of second-order differential expressions. Proc. London Math. Soc. (3), 29: 142–158. |
Библиографическая ссылка |
Giertz, M. ‘Report from the conference on ordinary and partial differential equations held in Dundee, March 30 to April 2 1976’ TRITA-MAT-1976–7 (Department of Mathematics, Royal Institute of Technology, Stockholm Sweden |
Библиографическая ссылка |
Hardy, G. H. and Littlewood, J. E. 1932. ‘Some integral inequalities connected with the calculus of variations’. Quart. J. Math. (Oxford) (2), 3 |
Библиографическая ссылка |
Hardy, G. H., Littlewood, J. E. and Pélya, G. 1934. Inequalities Cambridge University Press. |
Библиографическая ссылка |
Hinton, D on. 1974. “‘Limit-point limit-circle criteria for (py′)’ + qy = λ ky’”. In Lecture Notes in Mathematics 415–183. Berlin: Springer-Verlag. 173 |
Библиографическая ссылка |
Kalf, H. 1974. ‘Remarks on some Dirichlet-type results for semi-bounded Sturm-Liouville operators’. Math. Ann., 210: 192–205. |
Библиографическая ссылка |
Kwong, M. K. ‘Note on the strong limit-point condition of second-order differential expressions’. Quart. J. Math. (Oxford), (to appear). |
Библиографическая ссылка |
Kwong, M. K. ‘Conditional Dirichlet property of second-order differential expressions’. Quart. J. Math. (Oxford), (to appear). |
Библиографическая ссылка |
Naimark, M. A. 1968. Linear differential operators: Part II New York: Ungar. |
Библиографическая ссылка |
Titchmarsh, E. C. 1948. Introduction to the theory of Fourier integrals Oxford University Press. |
Библиографическая ссылка |
Titchmarsh, E. C. 1962. Eigenfunction expansions associated with second-order differential equations; Part I Oxford University Press. |