Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Everitt, W. N.
Дата выпуска 1978
dc.description 1. This note is concerned with inequalities of the form(1.1)where the open interval (a,b) of integration may be bounded or unbounded, i.e. −∞ ⋚ a ⋚ b ⋚ ∞, the coefficients p, q and w are real-valued on (a,b), w is non-negative, M is the symmetric differential expression(1.2)and η is the largest linear manifold of real-valued functions on (a,b), so chosen that the integrals on the right-hand side are both finite.
Формат application.pdf
Издатель Taylor & Francis Group
Копирайт Copyright Taylor and Francis Group, LLC
Название A GENERAL INTEGRAL INEQUALITY ASSOCIATED WITH CERTAIN ORDINARY DIFFERENTIAL OPERATORS
Тип research-article
DOI 10.1080/16073606.1978.9631547
Electronic ISSN 1727-933X
Print ISSN 1607-3606
Журнал Quaestiones Mathematicae
Том 2
Первая страница 479
Последняя страница 494
Аффилиация Everitt, W. N.; Department of Mathematics, The University
Выпуск 4
Библиографическая ссылка Atkinson, F. V. 1975. ‘Limit-n criteria of integral type’. Proc. Royal Soc. Edinburgh (A), 73: 167–198.
Библиографическая ссылка Brinck, I. 1959. ‘Self-adjointness and spectra of Sturm-Liouville operators’. Math. Scand., 7: 219–39.
Библиографическая ссылка Chaudhuri, Jyoti and Everitt, W. N. 1969. ‘On the spectrum of ordinary second-order differential operators’. Proc. Royal Soc. Edinburgh (A), 68: 95–119.
Библиографическая ссылка Evans, W. D. 1976. ‘On limit-point and Dirichlet-type results for second-order differential expressions’. Lecture Notes in Mathematics (Springer-Verlag, Berlin), 564: 78–92.
Библиографическая ссылка Everitt, W. N. 1975. “‘On the strong limit-point condition of second-order differential expressions’”. In Proceedings of the International Conference on Differential Equations 1974 287–307. New York: Academic Press.
Библиографическая ссылка Everitt, W. N. 1976. “‘A note on the Dirichlet condition for second-order differential expressions’”. In Canadian J. Math. Vol. XXXVIII, 312–320.
Библиографическая ссылка Everitt, W. N. ‘On a result of Brinck in the limit-point theory of second-order differential expressions; (to appear in Proc. Royal Soc. Edinburgh)’
Библиографическая ссылка Everitt, W. N. ‘A note on an integral inequality’ Quaestiones Mathematicae this issue.
Библиографическая ссылка Everitt, W. N. and Giertz, M. 1971. ‘Some properties of the domains of certain differential operators’. Proc. London Math. Soc. (3), 23: 301–324.
Библиографическая ссылка Everitt, W. N., Giertz, M. and McLeod, J. B. 1974. ‘On the strong and weak limit-point classification of second-order differential expressions. Proc. London Math. Soc. (3), 29: 142–158.
Библиографическая ссылка Giertz, M. ‘Report from the conference on ordinary and partial differential equations held in Dundee, March 30 to April 2 1976’ TRITA-MAT-1976–7 (Department of Mathematics, Royal Institute of Technology, Stockholm Sweden
Библиографическая ссылка Hardy, G. H. and Littlewood, J. E. 1932. ‘Some integral inequalities connected with the calculus of variations’. Quart. J. Math. (Oxford) (2), 3
Библиографическая ссылка Hardy, G. H., Littlewood, J. E. and Pélya, G. 1934. Inequalities Cambridge University Press.
Библиографическая ссылка Hinton, D on. 1974. “‘Limit-point limit-circle criteria for (py′)’ + qy = λ ky’”. In Lecture Notes in Mathematics 415–183. Berlin: Springer-Verlag. 173
Библиографическая ссылка Kalf, H. 1974. ‘Remarks on some Dirichlet-type results for semi-bounded Sturm-Liouville operators’. Math. Ann., 210: 192–205.
Библиографическая ссылка Kwong, M. K. ‘Note on the strong limit-point condition of second-order differential expressions’. Quart. J. Math. (Oxford), (to appear).
Библиографическая ссылка Kwong, M. K. ‘Conditional Dirichlet property of second-order differential expressions’. Quart. J. Math. (Oxford), (to appear).
Библиографическая ссылка Naimark, M. A. 1968. Linear differential operators: Part II New York: Ungar.
Библиографическая ссылка Titchmarsh, E. C. 1948. Introduction to the theory of Fourier integrals Oxford University Press.
Библиографическая ссылка Titchmarsh, E. C. 1962. Eigenfunction expansions associated with second-order differential equations; Part I Oxford University Press.

Скрыть метаданые