Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор van Niekerk, F D
Автор Snyman, J A
Дата выпуска 1983
dc.description ABSTRACTA finite element method for solving the wave equation with couples boundary conditions is presented. In this approach finite elements are applied globally with respect to space and simultaneously but locally with respect to time. This gives rise to a single-step method in time. The method is a practical and economic one and the numerical results obtained compare favourably with the available analytic solution.
Формат application.pdf
Издатель Taylor & Francis Group
Копирайт Copyright Taylor and Francis Group, LLC
Тема 65N
Название A GLOBAL-LOCAL FINITE ELEMENT METHOD IN SPACE-TIME FOR A HYPERBOLIC PROBLEM
Тип research-article
DOI 10.1080/16073606.1983.9632280
Electronic ISSN 1727-933X
Print ISSN 1607-3606
Журнал Quaestiones Mathematicae
Том 5
Первая страница 379
Последняя страница 393
Аффилиация van Niekerk, F D; Department of Mathematics, University of Pretoria
Аффилиация Snyman, J A; Department of Applied Mathematics, University of Pretoria
Выпуск 4
Библиографическая ссылка Bruch, J C and Zyvoloski, G. 1973. A Finite Element Weighted Residual Solution to One-Dimensional Field Problems. Internat J numer methods in Engin, 6: 577–585.
Библиографическая ссылка Bruch, J C and Zyvoloski, G. 1974. Transient Two-Dimensional Heat Conduction Problem solved by the Finite Element Method. Internat J numer methods in Engin, 8: 481–494.
Библиографическая ссылка Cella, A and Cecchi, M M. 1973. An Extended Theory for the Finite Element Method. Variat Meth Engin, Proc Internat Conf Southampton, 1 1/74–1/84
Библиографическая ссылка Davies, A J. 1980. The Finite Element Method: A First Approach Oxford
Библиографическая ссылка Douglas, J and Dupont, T. 1970. Galerkin Methods for Parabolic Equations. Siam J Numer Anal, 7: 575–626. No 4
Библиографическая ссылка Fairweather, G. 1978. Finite Element Galerkin Methods for Differential Equations Marcel Dekker.
Библиографическая ссылка Fix, G J and Strang, G. 1973. An Analysis of the Finite Element Method Prentice Hall.
Библиографическая ссылка Fried, I. Finite Element Analysis of Time-Dependent Phenomena. AIAA J, 71170–1173. No 6
Библиографическая ссылка Hulme, B L. 1972. Discrete Galerkin and Related One-step Methods for Ordinary Differential Equations. Math Comp, 26: 881–891. No 120
Библиографическая ссылка Mitchell, A R and Wait, R. 1977. The Finite Element Method in Partial Differential Equations Wiley.
Библиографическая ссылка Pinder, G F and Gray, W G. 1977. Finite Element Simulation In Surface and Subsurface Hydrology Academic Press.
Библиографическая ссылка Sauer, N and Van Rensburg, N F J. 1975. Aspects of Asymtotic Theory of Coupled Problems in Applied Mathematics. Proceedings of a Symposium on Differential Equations CSIR Special Report WISK, 161: 1–8.
Библиографическая ссылка Timoshenko, S. 1928. Vibration Problems in Engineering Van Nostrand.
Библиографическая ссылка Timoshenko, S, Young, D H and Weaver, W. 1974. Vibration Problems in Engineering Wiley.
Библиографическая ссылка Zienkiewicz, O C. 1971. The Finite Element Method in Engineering Science Mcgraw-Hill.

Скрыть метаданые