Автор |
Goddard, W |
Автор |
Winter, P A |
Дата выпуска |
1986 |
dc.description |
ABSTRACTA connected, nontrivial, simple graph of order v is said to be α,β destructible if α,β are factors of v and an α-set of edges, E', exists whose removal from G isolates exactly the vertices in α,β-set V'. Graphs which are not α,β destructible for any α,β are called stable, If G is a stable graph on a prime number p ≥ 7 of vertices, then we show that G has a maximum number of edges if and only if G is K<sub>2,p-2</sub>, We also characterize stable graphs on a minimum number of edges. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
05C75 |
Название |
A CHARACTERIZATION OF STABLE GRAPHS ON A MAXIMUM(MINIMUM) NUMBER OF EDGES |
Тип |
research-article |
DOI |
10.1080/16073606.1986.9631602 |
Electronic ISSN |
1727-933X |
Print ISSN |
1607-3606 |
Журнал |
Quaestiones Mathematicae |
Том |
10 |
Первая страница |
175 |
Последняя страница |
178 |
Выпуск |
2 |
Библиографическая ссылка |
Bondy, J. A. and Murty, U. S.R. 1976. Graph Theory with Applications. Elsevier. New York |
Библиографическая ссылка |
Goddard, W. and Winter, P. A. 1986. All graphs on a non-prime number of vertices are destructible.. Quaestiones Math., 8: 382–385. |
Библиографическая ссылка |
Winter, P. A. and Swart, Henda C. 1984. On α,β destructible graphs.. Quaestiones Math., 7: 161–178. |
Библиографическая ссылка |
Winter, P. A. and Swart, Henda C. 1985. On stable graphs.. Quaestiones Math., 7: 397–405. |