Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Goddard, W
Автор Winter, P A
Дата выпуска 1986
dc.description ABSTRACTA connected, nontrivial, simple graph of order v is said to be α,β destructible if α,β are factors of v and an α-set of edges, E', exists whose removal from G isolates exactly the vertices in α,β-set V'. Graphs which are not α,β destructible for any α,β are called stable, If G is a stable graph on a prime number p ≥ 7 of vertices, then we show that G has a maximum number of edges if and only if G is K<sub>2,p-2</sub>, We also characterize stable graphs on a minimum number of edges.
Формат application.pdf
Издатель Taylor & Francis Group
Копирайт Copyright Taylor and Francis Group, LLC
Тема 05C75
Название A CHARACTERIZATION OF STABLE GRAPHS ON A MAXIMUM(MINIMUM) NUMBER OF EDGES
Тип research-article
DOI 10.1080/16073606.1986.9631602
Electronic ISSN 1727-933X
Print ISSN 1607-3606
Журнал Quaestiones Mathematicae
Том 10
Первая страница 175
Последняя страница 178
Выпуск 2
Библиографическая ссылка Bondy, J. A. and Murty, U. S.R. 1976. Graph Theory with Applications. Elsevier. New York
Библиографическая ссылка Goddard, W. and Winter, P. A. 1986. All graphs on a non-prime number of vertices are destructible.. Quaestiones Math., 8: 382–385.
Библиографическая ссылка Winter, P. A. and Swart, Henda C. 1984. On α,β destructible graphs.. Quaestiones Math., 7: 161–178.
Библиографическая ссылка Winter, P. A. and Swart, Henda C. 1985. On stable graphs.. Quaestiones Math., 7: 397–405.

Скрыть метаданые