Автор |
Mabizela, Sizwe |
Дата выпуска |
1989 |
dc.description |
ABSTRACTIn this note we extend the concept of best approximation to linear 2-normed spaces. We define proxi-minal, semi-Chebyshev, and Chebyshev sets in linear 2-normed spaces. A linear 2-normed space X is said to be strictly convex if for all X,Y,Z, ϵ x, ||x+y.z|| = ||x,z|| + y,z||, ||x,y|| = 1 and z ϵ. V (x.u) imply x = y. We prove tat a linear 2-normed space X is strictly convex if and only if all convex sets in X are semi-Chebyshev. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
52A99 |
Название |
A CHARACTERIZATION OF STRICTLY CONVEX LINEAR 2-NOBMED SPACES |
Тип |
research-article |
DOI |
10.1080/16073606.1989.9632176 |
Electronic ISSN |
1727-933X |
Print ISSN |
1607-3606 |
Журнал |
Quaestiones Mathematicae |
Том |
12 |
Первая страница |
201 |
Последняя страница |
204 |
Аффилиация |
Mabizela, Sizwe; The Pennsylvania State Univ, Dept of Mathematics |
Выпуск |
2 |
Библиографическая ссылка |
Diminnie, C., Gäller, S. and White, A. 1974. Strictly convex linear 2-normed spaces. Math. Nachr., 59: 319–324. |
Библиографическая ссылка |
Hirschfeld, R. A. 1958. On best approximations in normed vector spaces. Nieuw Arch. Wisk., 6: 41–51. |
Библиографическая ссылка |
Iséki, K. 1975. Non nonexpansive mappings in strictly convex linear 2-normed spaces. Math. Sent. Notes Kobe Univ., 3: 125–129. |