Автор |
Poppe, Harry |
Дата выпуска |
1993 |
dc.description |
AbstractLet X, Y be topological spaces. We denote by Y<sup>x</sup> , C(X, Y) and G(X, Y) the set of all functions from X to Y, the set of all continuous functions and of all functions with closed graphs respectively. Now as is well-known, identifying a function f with its graph Γfwe can transfer a (known) hyperspace topology for the product space X x Y to the function space Y<sup>x</sup> (or to a subspace of Y<sup>x</sup> ). A function space topology which is generated in this way we will call a graph topology. For a broad and important family of such graph topologies for each member of this family we can define an associated weaker graph topology. This family will be characterized, and we find general conditions implying the joint continuity and the validity of the HausdorfF separation axiom for the members of this family and their associated weak graph topologies. Applying these general assertions we get back corresponding results for the weak Fell topology and the Fell topology respectively and we get new results for graph topologies generated by connected sets. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
54C35; |
Тема |
54B20 |
Название |
A FAMILY OF GRAPH TOPOLOGIES FOR FUNCTION SPACES AND THEIR ASSOCIATED WEAK GRAPH TOPOLOGIES |
Тип |
research-article |
DOI |
10.1080/16073606.1993.9631711 |
Electronic ISSN |
1727-933X |
Print ISSN |
1607-3606 |
Журнал |
Quaestiones Mathematicae |
Том |
16 |
Первая страница |
1 |
Последняя страница |
11 |
Аффилиация |
Poppe, Harry; University of Rostock, Department of Mathematics |
Выпуск |
1 |
Библиографическая ссылка |
Arens, R. F. and Dugundji, J. 1951. Topologies for function spaces, Pacific. J. Math., 1: 5–31. |
Библиографическая ссылка |
Di Maio, G. and Naimpally, S. A. 1990. Comparison of Hypertopologies 1–33. Universita Degli Studi Di Napoli “Frederico II”, Dipartimento Di Matematica ED Appli-cazioni “R. Caccioppoli”, Preprint N. 23 a.a./91 |
Библиографическая ссылка |
Dugundji, J. 1966. Topology Boston |
Библиографическая ссылка |
Fell, J. M.G. 1962. A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space. Proc. Amer. Math. Soc., 13: 472–476. |
Библиографическая ссылка |
Flachsmeyer, J. 1964. Verschiedene Topologisierungen im Raum der abgeschlossenen Teilmengen. Math. Nachr., 26: 321–337. |
Библиографическая ссылка |
Flachsmeyer, J. and Poppe, H. 1969. On Extensions of Hyperspaces 73–76. Proceedings of the I. International Symposium on Extension Theory of Topological Structures and its Applications, held in Berlin 1967, DVW Berlin |
Библиографическая ссылка |
Holà, L. and Poppe, H. 1991. “On the Fell topology for function spaces, Preprints 91–3”. In Hochschule für Seefahrt Warnemünde-Wustrow 1–15. Rostock |
Библиографическая ссылка |
Jeschek, F. 1971. “Remarks on “Connected” Topologies for function spaces”. In Bull. De L'Acad. Polon. Des Sci., Serie sci math., astr. et phys. 1045–1051. XIX |
Библиографическая ссылка |
Klein, E. and Thompson, A. 1984.. Theory of correspondences New York: Wiley. |
Библиографическая ссылка |
Michael, E. 1951. Topologies on spaces of subsets. Trans. Amer. Math. Soc., 71: 152–182. |
Библиографическая ссылка |
McCoy, R. A. and Ntantu, I. 1988. Topological properties of spaces of continuous functions Springer Verlag. Lecture notes in mathematics, Berlin Heidelberg |
Библиографическая ссылка |
Naimpally, S. A. 1966. Graph topology for function spaces. Trans. Amer. Math. Soc., 123: 267–272. |
Библиографическая ссылка |
Naimpally, S. A. 1991. Hyperspaces and function spaces, Quest.. Answers Gen. Topology, 9: 33–60. |
Библиографическая ссылка |
Poppe, H. 1965. Eine Bemerkung über Trennungsaxiome in Räumen von abgeschlossenen Teilmengen topologischer Räume. Archiv der Mathematik, 16: 197–199. |
Библиографическая ссылка |
Poppe, H. 1966. Einige Bemerkungen über den Raum der abgeschlossenen Mengen. Fund. Math., 59: 159–169. |
Библиографическая ссылка |
Poppe, H. 1967. Über Graphentopologien für Abbildungsräume I. Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys., 15: 71–80. |
Библиографическая ссылка |
Poppe, H. 1968. “Über Graphentopologien für Abbildungsräume II”. In Math. Nachr. 89–96. 38 |
Библиографическая ссылка |
Poppe, H. 1974. Compactness in general function spaces Deutscher Verlag der Wissen-schaften, Berlin |
Библиографическая ссылка |
Poppe, H. 1991. Joint continuity and compactness for a graph topology in general function spaces. Math. Nachr., 152: 173–177. |
Библиографическая ссылка |
Schmidt, H.-J. 1984. Topologies of the hyperspace which are induced by extension spaces. Math. Nachr., 118: 105–113. |
Библиографическая ссылка |
Tychonoff, A. 1936. Übereinen topologischen Universalraum. C.R. Acad. Sci. URSS, 3: 45–51. |
Библиографическая ссылка |
Vietoris, L. 1923. Bereiche zweiter Ordnung. Monat. für Math., 33: 49–62. |