Автор |
Geldenhuys, Gerhard |
Дата выпуска |
1993 |
dc.description |
AbstractA cooperation graph is defined as a finite, simple, connected, noncomplete, labelled graph with at least three vertices. A non-negative normalized cohesion index is defined for such graphs. The vertices with positive index form a dominating set. Explicit expressions for the determination of the indices of cohesion for some important classes of graphs are derived. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
05C40 |
Название |
A COHESION INDEX FOR COOPERATION GRAPHS |
Тип |
research-article |
DOI |
10.1080/16073606.1993.9631735 |
Electronic ISSN |
1727-933X |
Print ISSN |
1607-3606 |
Журнал |
Quaestiones Mathematicae |
Том |
16 |
Первая страница |
229 |
Последняя страница |
235 |
Аффилиация |
Geldenhuys, Gerhard; Department of Applied Mathematics, University of Stellenbosch |
Выпуск |
3 |
Библиографическая ссылка |
Bondy, J. A. and Murty, U. S.R. 1976. Graph Theory with Applications London: Macmillan. |
Библиографическая ссылка |
Grofman, B. and Owen, G. 1982. A game theoretic approach to measuring degree of centrality in social networks. Social Networks, 4: 213–224. |
Библиографическая ссылка |
Harary, F. and Ostrand, P. A. 1971. The cutting center theorem for trees. Discrete Mathematics, 1: 7–18. |
Библиографическая ссылка |
Logan, E. L. and Shaw, W. M. 1987. An investigation of the coauthor graph. Journal of the American Society for Information Science, 38: 262–268. |
Библиографическая ссылка |
Packer, D. 1988. Acquisitions allocations: Equity, politics, and formulas. Journal of Academic Librarianship, 14: 276–286. |
Библиографическая ссылка |
Ringeisen, R. D. and Lipman, M. J. 1983. Cohesion and stability in graphs. Discrete Mathematics, 46: 191–198. |
Библиографическая ссылка |
Shaw, W. M. 1985. Critical thresholds in recitation graphs. Journal of the American Society for Information Science, 36: 38–43. |