Автор |
Cohen, Henri |
Автор |
Lewin, Leonard |
Автор |
Zagier, Don |
Дата выпуска |
1992 |
dc.description |
Using the LLL algorithm and the second author's “ladder” method, we fi nd (conjec tural) Z-linear relations among polylogarithms of order up to 16 evaluated at powers of a single algebraic number. These relations are in accordance with theoretical predictions and are valid to an accuracy of 300 decimal digits, but we cannot prove them rigorously. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
A Sixteenth-order Polylogarithm Ladder |
Тип |
research-article |
DOI |
10.1080/10586458.1992.10504243 |
Electronic ISSN |
1944-950X |
Print ISSN |
1058-6458 |
Журнал |
Experimental Mathematics |
Том |
1 |
Первая страница |
25 |
Последняя страница |
34 |
Аффилиация |
Cohen, Henri; Centre de Recherche en Mathérnatiques de Bordeaux, Université Bordeaux I |
Аффилиация |
Lewin, Leonard; Department of Electrical and Computer Engineering, University of Colorado at Boulder |
Аффилиация |
Zagier, Don; Max-Planck-Institut fiir Mathematik, Gottfried-Claren-Str |
Выпуск |
1 |
Библиографическая ссылка |
Abouzahra, M. and Lewin, L. 1985. “The poly logarithm in algebraic number fields”. J. Number Th., 21: 214–244. [Abouzahra and Lewin 1985] |
Библиографическая ссылка |
Abouzahra, M., Lewin, L. and Xiao, H. 1987. “Polylogarithms in the field of omega (a root of a given cubic): functional equations and ladders”. Aeq. Math., 33: 23–45. [Abouzahra et al. 1987] |
Библиографическая ссылка |
Lehmer, D. H. 1933. “Factorization of certain cyclotomic functions”. Ann. Math., 34: 461–479. [Lehmer 1933] |
Библиографическая ссылка |
Lenstra, A., Lenstra, H. and Lovász, L. 1982. “Factoring polynomials with rational coefficients”. Math. Ann., 21: 515–534. [Lenstra et al. 1982] |
Библиографическая ссылка |
Lewin, L. 1981. Polylogarithms and Associated Functions New York: North-Holland.. [Lewin 1981] |
Библиографическая ссылка |
Lewin, L. 1984. “The inner structure of the dilogarithm in algebraic fields”. J. Number Th., 19: 345–373. [Lewin 1984] |
Библиографическая ссылка |
Lewin, L. 1991. The Structural Properties of Polylogarithms Providence, PI: American Mathematical Society.. [Lewin 1991], Amer. Math. Soc. Monographs 37 |
Библиографическая ссылка |
Zagier, D. 1991. “Polylogarithms, Dedekind zeta functions, and the algebraic AT-theory of fields”.”. In Arithmetic Algebraic Geometry Edited by: Geer, G. v. d., Oort, F. and Steenbrink, J. 391–430. Boston: Birkhauser.. [Zagier 1991a], Prog. in Math. 89 |
Библиографическая ссылка |
Zagier, D. “Special values and functional values of polylogarithms” [Zagier 1991b], Appendix in [Lewin 1991] |