Автор |
Callahan, Michael |
Автор |
Hoffman, David |
Автор |
Karcher, Hermann |
Дата выпуска |
1993 |
dc.description |
We construct explicitly, using the generalized Weierstrass representation, a complete embedded minimal surface M <sub> k </sub>,θ invariant under a rotation of order k + 1 and a screw motion of angle 2θ about the same axis, where k > 0 is any integer and ois any angle with |θ| < π/(k + 1). The existence of such surfaceswas proved in [Callahan et al. 1990), but no practical procedure for constructing them was given there.We also show that the sameproblem for θ = ±π/(k+1) does not have a solution enjoying reflective symmetry; the question of the existence of a solution without such symmetry is left open. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
A Family of Singly Periodic Minimal Surfaces Invariant under a Screw Motion |
Тип |
research-article |
DOI |
10.1080/10586458.1993.10504276 |
Electronic ISSN |
1944-950X |
Print ISSN |
1058-6458 |
Журнал |
Experimental Mathematics |
Том |
2 |
Первая страница |
157 |
Последняя страница |
182 |
Аффилиация |
Callahan, Michael; Mathematical Institute, Oxford University |
Аффилиация |
Hoffman, David; Department of Mathematics, University of Massachusetts |
Аффилиация |
Karcher, Hermann; Mathematisches Institut, Universitiit Bonn |
Выпуск |
3 |
Библиографическая ссылка |
Callahan, M., Hoffman, D. and Hoffman, J. 1988. “Computer graphics tools for the study of minimal surfaces”. Communications of the ACM, 31: 648–661. [Callahan et al. 1988] |
Библиографическая ссылка |
Callahan, M., Hoffman, D. and Meeks, W. H. III. 1989. “Embedded minimal surfaces with an infinite number of ends”. Inventiones Math., 96: 459–505. [Callahan et al. 1989] |
Библиографическая ссылка |
Callahan, M., Hoffman, D. and Meeks, W. H. III. 1990. “The structure of singly-periodic minimal surfaces”. Inventiones Math., 99: 455–481. [Callahan et al. 1990] |
Библиографическая ссылка |
do Carmo, M. 1976. Differential Geometry of Curves and Surfaces New Jersey: Prentice Hall.. [do Carmo 1976] |
Библиографическая ссылка |
Hoffman, D. 1987. “The computer-aided discovery of new embedded minimal surfaces”. Mathematical Intelligencer, 9(3): 8–21. [Hoffman 1987a] |
Библиографическая ссылка |
Hoffman, D. 1987. “The construction of families of embedded minimal surfaces”.”. In Variational Methods for Free Surface Interfaces Edited by: Concus, P. and Finn, R. 25–36. New York: Springer-Verlag.. [Hoffman 1987b] |
Библиографическая ссылка |
Hoffman, J. T. MESH manual Amherst: GANG, Univ. of Massachusetts.. [Hoffman 1993], preprint 35 (series 2), See “Software Availability” below |
Библиографическая ссылка |
Hoffman, D. and Karcher, H. “Complete embedded minimal surfaces of finite total curvature” [Hoffman and Karcher], in preparation |
Библиографическая ссылка |
Hoffman, D., Karcher, H. and Meeks, W. H. III. “One-parameter families of embedded complete minimal surfaces of finite topology” [Hoffman et al.], in preparation |
Библиографическая ссылка |
Hoffman, D., Karcher, H. and Wei, F. 1994. “The genus one helicoid and the minimal surfaces that led to its discovery”.”. In Global Analysis and Modern Mathematics Publish or Perish.. [Hoffman et al. 1994], to appear in |
Библиографическая ссылка |
Hoffman, D., Karcher, H. and Wei, F. 1993. “Adding handles to the helicoid”. Bull. Amer. Math. Soc., 29: 77–84. [Hoffman et al. 1993] |
Библиографическая ссылка |
Hoffman, D. and Meeks, W. H. III. 1985. “A complete embedded minimal surface in R<sup>3</sup> with genus one and three ends”. J. Diff. Geom., 21: 109–127. [Hoffman and Meeks 1985a] |
Библиографическая ссылка |
Hoffman, D. and Meeks, W. H. III. 1985. “Complete embedded minimal surfaces of finite total curvature”. Bull. Amer. Math. Soc., 12: 134–136. [Hoffman and Meeks 1985b] |
Библиографическая ссылка |
Hoffman, D. and Meeks, W. H. III. 1987. “Properties of properly embedded minimal surfaces of finite total curvature”. Bull. Amer. Math. Soc., 17: 296–300. [Hoffman and Meeks 1987] |
Библиографическая ссылка |
Hoffman, D. and Meeks, W. H. III. 1990. “Minimal surfaces based on the catenoid”. Amer. Math. Monthly, 97: 702–730. [Hoffman and Meeks 1990] |
Библиографическая ссылка |
Hoffman, D. and Wohlgemuth, M. “New embedded periodic minimal surfaces of Riemann-type” [Hoffman and Wohlgemuth], in preparation |
Библиографическая ссылка |
Karcher, H. 1988. “Embedded minimal surfaces derived from Scherk's examples”. Manuscripta Math., 62: 83–114. [Karcher 1988] |
Библиографическая ссылка |
Karcher, H. 1989. “Construction of minimal surfaces”.”. In Surveys in Geometry 1–96. University of Tokyo.. [Karcher 1989a], and Lecture Notes No. 12, Sonderforschungsbereich 256, Bonn, 1989 |
Библиографическая ссылка |
Karcher, H. 1989. “The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature companions”. Manuscripta Math., 64: 291–357. [Karcher 1989b] |
Библиографическая ссылка |
Lawson, H. B. Jr. 1971. Lectures on Minimal Submanifolds Berkeley: Publish or Perish.. [Lawson 1971] |
Библиографическая ссылка |
Meeks, W. H. III and Rosenberg, H. “The geometry of periodic minimal surfaces” [Meeks and Rosenberg 1994], to appear in Comm. Math. Helvetici. |
Библиографическая ссылка |
Osserman, R. 1986. A Survey of Minimal Surfaces, , 2nd ed. New York: Dover.. [Osserman 1986] |
Библиографическая ссылка |
Press, W., Flannery, B., Teukolsky, S. and Vetterling, W. 1986. Numerical Recipes Cambridge: Cambridge University Press.. [Press et al. 1986] |
Библиографическая ссылка |
Schoen, R. 1983. “Uniqueness, symmetry, and embeddedness of minimal surfaces”. J. Diff. Geom., 18: 791–809. [Schoen 1983] |
Библиографическая ссылка |
Wei, F. “Singly periodic, embedded minimal surfaces of even genus” [Wei], in preparation |
Библиографическая ссылка |
Wei, F. 1991. “The existence and topology of properly embedded minimal surfaces in R<sup>3</sup>“, Ph.D. thesis Amherst: University of Massachusetts.. [Wei 1991] |
Библиографическая ссылка |
Wei, F. 1992. “Some existence and uniqueness theorems for doubly periodic minimal surfaces”. Invent. Math., 109: 113–136. [Wei 1992] |
Библиографическая ссылка |
Wohlgemuth, M. 1991. “Higher genus minimal surfaces by growing handles out of a catenoid”. Manuscripta Math., 70: 397–428. [Wohlgemuth 1991] |