Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Callahan, Michael
Автор Hoffman, David
Автор Karcher, Hermann
Дата выпуска 1993
dc.description We construct explicitly, using the generalized Weierstrass representation, a complete embedded minimal surface M <sub> k </sub>,θ invariant under a rotation of order k + 1 and a screw motion of angle 2θ about the same axis, where k > 0 is any integer and ois any angle with |θ| < π/(k + 1). The existence of such surfaceswas proved in [Callahan et al. 1990), but no practical procedure for constructing them was given there.We also show that the sameproblem for θ = ±π/(k+1) does not have a solution enjoying reflective symmetry; the question of the existence of a solution without such symmetry is left open.
Формат application.pdf
Издатель Taylor & Francis Group
Копирайт Copyright Taylor and Francis Group, LLC
Название A Family of Singly Periodic Minimal Surfaces Invariant under a Screw Motion
Тип research-article
DOI 10.1080/10586458.1993.10504276
Electronic ISSN 1944-950X
Print ISSN 1058-6458
Журнал Experimental Mathematics
Том 2
Первая страница 157
Последняя страница 182
Аффилиация Callahan, Michael; Mathematical Institute, Oxford University
Аффилиация Hoffman, David; Department of Mathematics, University of Massachusetts
Аффилиация Karcher, Hermann; Mathematisches Institut, Universitiit Bonn
Выпуск 3
Библиографическая ссылка Callahan, M., Hoffman, D. and Hoffman, J. 1988. “Computer graphics tools for the study of minimal surfaces”. Communications of the ACM, 31: 648–661. [Callahan et al. 1988]
Библиографическая ссылка Callahan, M., Hoffman, D. and Meeks, W. H. III. 1989. “Embedded minimal surfaces with an infinite number of ends”. Inventiones Math., 96: 459–505. [Callahan et al. 1989]
Библиографическая ссылка Callahan, M., Hoffman, D. and Meeks, W. H. III. 1990. “The structure of singly-periodic minimal surfaces”. Inventiones Math., 99: 455–481. [Callahan et al. 1990]
Библиографическая ссылка do Carmo, M. 1976. Differential Geometry of Curves and Surfaces New Jersey: Prentice Hall.. [do Carmo 1976]
Библиографическая ссылка Hoffman, D. 1987. “The computer-aided discovery of new embedded minimal surfaces”. Mathematical Intelligencer, 9(3): 8–21. [Hoffman 1987a]
Библиографическая ссылка Hoffman, D. 1987. “The construction of families of embedded minimal surfaces”.”. In Variational Methods for Free Surface Interfaces Edited by: Concus, P. and Finn, R. 25–36. New York: Springer-Verlag.. [Hoffman 1987b]
Библиографическая ссылка Hoffman, J. T. MESH manual Amherst: GANG, Univ. of Massachusetts.. [Hoffman 1993], preprint 35 (series 2), See “Software Availability” below
Библиографическая ссылка Hoffman, D. and Karcher, H. “Complete embedded minimal surfaces of finite total curvature” [Hoffman and Karcher], in preparation
Библиографическая ссылка Hoffman, D., Karcher, H. and Meeks, W. H. III. “One-parameter families of embedded complete minimal surfaces of finite topology” [Hoffman et al.], in preparation
Библиографическая ссылка Hoffman, D., Karcher, H. and Wei, F. 1994. “The genus one helicoid and the minimal surfaces that led to its discovery”.”. In Global Analysis and Modern Mathematics Publish or Perish.. [Hoffman et al. 1994], to appear in
Библиографическая ссылка Hoffman, D., Karcher, H. and Wei, F. 1993. “Adding handles to the helicoid”. Bull. Amer. Math. Soc., 29: 77–84. [Hoffman et al. 1993]
Библиографическая ссылка Hoffman, D. and Meeks, W. H. III. 1985. “A complete embedded minimal surface in R<sup>3</sup> with genus one and three ends”. J. Diff. Geom., 21: 109–127. [Hoffman and Meeks 1985a]
Библиографическая ссылка Hoffman, D. and Meeks, W. H. III. 1985. “Complete embedded minimal surfaces of finite total curvature”. Bull. Amer. Math. Soc., 12: 134–136. [Hoffman and Meeks 1985b]
Библиографическая ссылка Hoffman, D. and Meeks, W. H. III. 1987. “Properties of properly embedded minimal surfaces of finite total curvature”. Bull. Amer. Math. Soc., 17: 296–300. [Hoffman and Meeks 1987]
Библиографическая ссылка Hoffman, D. and Meeks, W. H. III. 1990. “Minimal surfaces based on the catenoid”. Amer. Math. Monthly, 97: 702–730. [Hoffman and Meeks 1990]
Библиографическая ссылка Hoffman, D. and Wohlgemuth, M. “New embedded periodic minimal surfaces of Riemann-type” [Hoffman and Wohlgemuth], in preparation
Библиографическая ссылка Karcher, H. 1988. “Embedded minimal surfaces derived from Scherk's examples”. Manuscripta Math., 62: 83–114. [Karcher 1988]
Библиографическая ссылка Karcher, H. 1989. “Construction of minimal surfaces”.”. In Surveys in Geometry 1–96. University of Tokyo.. [Karcher 1989a], and Lecture Notes No. 12, Sonderforschungsbereich 256, Bonn, 1989
Библиографическая ссылка Karcher, H. 1989. “The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature companions”. Manuscripta Math., 64: 291–357. [Karcher 1989b]
Библиографическая ссылка Lawson, H. B. Jr. 1971. Lectures on Minimal Submanifolds Berkeley: Publish or Perish.. [Lawson 1971]
Библиографическая ссылка Meeks, W. H. III and Rosenberg, H. “The geometry of periodic minimal surfaces” [Meeks and Rosenberg 1994], to appear in Comm. Math. Helvetici.
Библиографическая ссылка Osserman, R. 1986. A Survey of Minimal Surfaces, , 2nd ed. New York: Dover.. [Osserman 1986]
Библиографическая ссылка Press, W., Flannery, B., Teukolsky, S. and Vetterling, W. 1986. Numerical Recipes Cambridge: Cambridge University Press.. [Press et al. 1986]
Библиографическая ссылка Schoen, R. 1983. “Uniqueness, symmetry, and embeddedness of minimal surfaces”. J. Diff. Geom., 18: 791–809. [Schoen 1983]
Библиографическая ссылка Wei, F. “Singly periodic, embedded minimal surfaces of even genus” [Wei], in preparation
Библиографическая ссылка Wei, F. 1991. “The existence and topology of properly embedded minimal surfaces in R<sup>3</sup>“, Ph.D. thesis Amherst: University of Massachusetts.. [Wei 1991]
Библиографическая ссылка Wei, F. 1992. “Some existence and uniqueness theorems for doubly periodic minimal surfaces”. Invent. Math., 109: 113–136. [Wei 1992]
Библиографическая ссылка Wohlgemuth, M. 1991. “Higher genus minimal surfaces by growing handles out of a catenoid”. Manuscripta Math., 70: 397–428. [Wohlgemuth 1991]

Скрыть метаданые