Автор |
Nitaj, Abderrahmane |
Дата выпуска |
1993 |
dc.description |
The radical rad n of an integer n ≠ 0 is the product of the primes dividing n. The abc-conjecture and the Szpiro conjecture imply that, for any positive relatively prime integers a, b, and e such that a + b = c, the expressionsare bounded. We give an algorithm for finding triples (a, b, c) for which these ratios are high with respectto their conjectured asymptotic values. The algorithm is based on approximation methods for solving the equation Ax <sup> n </sup> – By <sup> n </sup> = C <sub> z </sub> in integers x, y, and z with srnall |z|.Additionally, we employ these triples to obtain semistable elliptic curves over Q with high Szpiro ratiowhere Δ is the discriminant and N is the conductor. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
Algorithms for Finding Good Examples for the abc and Szpiro Conjectures |
Тип |
research-article |
DOI |
10.1080/10586458.1993.10504279 |
Electronic ISSN |
1944-950X |
Print ISSN |
1058-6458 |
Журнал |
Experimental Mathematics |
Том |
2 |
Первая страница |
223 |
Последняя страница |
230 |
Аффилиация |
Nitaj, Abderrahmane; Departernent de Mathematiques, Universite de Caen |
Выпуск |
3 |
Библиографическая ссылка |
Browkin, J. and Brzezinski, J. 1992–30. “Some remarks on abc-conjecture” Göteborg Univ.. [Browkin and Brzezinski 1992], preprint |
Библиографическая ссылка |
Elkies, N. and Kanapka, J. [Elkies and Kanapka], private communication. The results of this search are available upon request: contact the first editor at elkies@math.harvard.edu. |
Библиографическая ссылка |
Nitaj, A. 1992. “Algorithms for finding abc-examples” France: Université de Caen.. [Nitaj 1992], preprint 60 |
Библиографическая ссылка |
Niven, I., Zuckerman, H. S. and Montgomery, H. L. 1991. An Introduction to the Theory of Numbers New York: Wiley.. [Niven et al. 1991] |
Библиографическая ссылка |
Oesterlé, J. 1988. “Nouvelles approches du théorème de Fermat”. Astérisque, 161–162: 165–186. [Oesterlé 1988], Sém. Bourbaki 694 |
Библиографическая ссылка |
Silverman, J. H. 1986. The Arithmetic of Elliptic Curves New York: Springer-Verlag.. [Silverman 1986] |
Библиографическая ссылка |
de Weger, B. M. M. 1987. “Solving exponential diophantine equations using lattice basis reduction algorithms”. J. Number Theory, 26: 325–367. [de Weger 1987] |