Автор |
Buchmann, Johannes |
Автор |
lüntgen, Max |
Автор |
Pohst, Michael |
Дата выпуска |
1994 |
dc.description |
We describe an implementation of the generalized Lagrange algorithm for computing units in algebraic number fields [Buchmann 1987a], together with extensive experimental data of the algorithm's application (to all totally real quartic fields of discriminant below 60000). We also present an improved algorithm, with related experimental data. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Тема |
phrases |
Тема |
units |
Тема |
fundamental units |
Тема |
principal ideal test |
Название |
A Practical Version of the Generalized Lagrange Algorithm |
Тип |
research-article |
DOI |
10.1080/10586458.1994.10504290 |
Electronic ISSN |
1944-950X |
Print ISSN |
1058-6458 |
Журнал |
Experimental Mathematics |
Том |
3 |
Первая страница |
199 |
Последняя страница |
207 |
Аффилиация |
Buchmann, Johannes; Universität des Saarlandes, FB-14 Informatik |
Аффилиация |
lüntgen, Max; Fachbereich 3 Mathematik MA 8-1, Technische Universität Berlin |
Аффилиация |
Pohst, Michael; Fachbereich 3 Mathematik MA 8-1, Technische Universität Berlin |
Выпуск |
3 |
Библиографическая ссылка |
Arenz, B. 1991. “Computing fundamental units from independent ones”.”. In Computational Number Theory, Debrecen (Hungary), 1989 Edited by: Pethö, A. 163–171. Berlin: de Gruyter.. [Arenz 1991] |
Библиографическая ссылка |
Buchmann, J. 1987. “On the computation of units and class numbers by a generalization of Lagrange's algorithm”. J. Number Theory, 26: 8–30. [Buchmann 1987a] |
Библиографическая ссылка |
Buchmann, J. 1987. “On the period length of the generalized Lagrange algorithm”. J. Number Theory, 26: 31–37. [Buchmann 1987b] |
Библиографическая ссылка |
Buchmann, J. 1988. “Zur Komplexität der Berechnung von Einheiten und Klassenzahlen algebraischer Zahlkörper” Habilitationsschrift, U. Düsseldorf.. [Buchmann 1988] |
Библиографическая ссылка |
Buchmann, J. and Pethö, A. 1989. “On the computation of independent units in number fields by Dirichlet's method”. Math. Comp., 52: 149–159. [Buchmann and Pethö 1989] |
Библиографическая ссылка |
Buchmann, J., Pohst, M. and Schmettow, J. V. 1989. “On the computation of unit groups and class groups of totally real quartic fields”. Math. Comp., 53: 387–397. [Buchmann et al. 1989] |
Библиографическая ссылка |
Fincke, U. and Pohst, M. 1983. “A procedure for determining algebraic integers of given norm”.”. In Computer Algebra: EUROCAL ′83, London, 1983 Edited by: van Hulzen, J. A. 194–202. Berlin: Springer.. [Fincke and Pohst 1983], Lecture Notes in Computer Science 162 |
Библиографическая ссылка |
Fincke, U. and Pohst, M. 1985. “A new method for computing fundamental units in algebraic number fields”.”. In Computer Algebra: EUROCAL ′85, Linz, 1985 Edited by: Caviness, Bob. 470–479. Berlin: Springer.. [Fincke and Pohst 1985], Lecture Notes in Computer Science 204 |
Библиографическая ссылка |
Jüntgen, M. 1990. “Berechnung von Einheiten in algebraischen Zahlkörpern mittels des verallgemeinerten Lagrangeschen Kettenbruchalgorithmus” Diplomarbeit, U. Düsseldorf.. [Jüntgen 1990] |
Библиографическая ссылка |
Pohst, M. 1987. “A modification of the LLL–algorithm”. J. Symbolic Comp., 4: 123–128. [Pohst 1987] |
Библиографическая ссылка |
Pohst, M. and Zassenhaus, H. 1989. Algorithmic Algebraic Number Theory Cambridge: Cambridge University Press.. [Pohst and Zassenhaus 1987], Encyc. of Math, and Its Applications |
Библиографическая ссылка |
Graf, J. and Schmettow, V. “Kant: A tool for computations in algebraic number fields”. Computational Number Theory, Proc. Coll. Comp. Number Theory, Debrecen (Hungary). Edited by: Pethö, A. pp.321–330. Berlin: de Gruyter.. [Schmettow 1991], 1989 |