Автор |
Boyd, David W. |
Дата выпуска |
1994 |
dc.description |
Let H <sub> n </sub> = 1 + ½ + … + be the n-th partial sum of the harmonic series. A classical result of Wolstenholme states that, if p > 3 is prime, the numerator of H <sub> p </sub>–l is divisible by p <sup>2</sup>. Here we consider, for a given prime p, the set J <sub> p </sub> of n for which p divides the numerator of H <sub> n </sub>. This set J <sub> p </sub> had been previously determined for p = 2,3,5,7. One of our results is that J <sub>11</sub> contains exactly 638 integers, the largestof which is a number of 31 decimal digits. We determine J <sub> p </sub> for all p < 550 with three exceptions: 83, 127 and 397.The computation is based on a new p-adically convergent formula for the quantity H <sub> pn </sub> – H <sub> n </sub>/p. We describe a probabilistic model for the sets J <sub> p </sub>, based on branching processes. The model predicts that |J <sub> p </sub>| = O(p <sup>2</sup>(log log p)<sup>2+∊</sup>), and that there are infinitely many p with |J <sub> p </sub>| ≥ p <sup>2</sup>(log log p)<sup>2</sup>. This strengthens an earlier conjecture of Eswarathasan and Levine that |J <sub>p</sub>| is finite for all p. Another prediction of the model is that there will be infin itely many pairs (n,p) for which p <sup>3</sup> divides the numerator of H <sub> n </sub>, but only finitely many for which p <sup>4</sup> divides H <sub> n </sub>.It has been conjectured that there are infinitely many p for which |J<sub>p</sub> | = 3. We give a probabilistic argument that suggests that such primes have a density 1/e in the set of all primes, and experimentally confirm this by a determination of all such p ≤ 10<sup>5</sup>. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
A p-adic Study of the Partial Sums of the Harmonic Series |
Тип |
research-article |
DOI |
10.1080/10586458.1994.10504298 |
Electronic ISSN |
1944-950X |
Print ISSN |
1058-6458 |
Журнал |
Experimental Mathematics |
Том |
3 |
Первая страница |
287 |
Последняя страница |
302 |
Аффилиация |
Boyd, David W.; Department of Mathematics, University of British Columbia |
Выпуск |
4 |
Библиографическая ссылка |
Batut, C., Bernardi, D., Cohen, H. and Olivier, M. User's Guide to Pari-GP. [Batut et al. 1993], This manual is part of the program distribution, available by anonymous ftp from the host pari@ceremab. u-bordeaux.fr |
Библиографическая ссылка |
Bernoulli, J. 1713. Ars Conjectandi 85–90. Basel [Bernoulli 1713], Reprinted in Die Werke von Jakob Bernoulli, Birkhäuser, Basel, 1975, vol. 3, pp. 163–167. English translation in D. E. Smith, A Source Book in Mathematics, McGraw-Hill, New York, 1929; reprinted by Dover, New York, 1959 |
Библиографическая ссылка |
Buhler, J., Crandall, R., Ernvall, R. and Metsänkylä, T. 1993. “Irregular primes and cyclotomic invariants to four million”. Math. Comp., 61: 151–153. [Buhler et al. 1993] |
Библиографическая ссылка |
Dickson, L. E. 1952. History of the Theory of Numbers vol. 1, New York: Chelsea.. [Dickson 1952] |
Библиографическая ссылка |
Eswarathasan, A. and Levine, E. 1991. “p-integral harmonic sums”. Discrete Math., 91: 249–257. [Eswarathasan and Levine 1991] |
Библиографическая ссылка |
Euler, L. 1738. “Methodus generalis summandi progressiones”. Comment. Acad. Sci. Petrop., 6: 68–97. [Euler 1738] |
Библиографическая ссылка |
Gardiner, A. 1988. “Four problems on prime power divisibility”. Amer. Math. Monthly, 95: 926–931. [Gardiner 1988] |
Библиографическая ссылка |
Glaisher, J. W. L. 1900/01. “A general congruence theorem relating to the Bernoullian function”. Proc. London Math. Soc., 33: 27–56. [Glaisher 1901] |
Библиографическая ссылка |
Guy, R. K. 1993. “A quarter century of Monthly unsolved problems, 1969–1993”. American Math. Monthly, 100: 945–949. [Guy 1993] |
Библиографическая ссылка |
Graham, R. L., Knuth, D. E. and Patashnik, O. 1989. Concrete Mathematics Reading, MA: Addison-Wesley.. [Graham et al. 1989] |
Библиографическая ссылка |
Hardy, G. H. and Wright, E. M. 1960. An Introduction to the Theory of Numbers, , 4th ed. Oxford: Oxford University Press.. [Hardy and Wright 1960] |
Библиографическая ссылка |
Harris, T. E. 1963. The Theory of Branching Processes Berlin: Springer.. [Harris 1963] |
Библиографическая ссылка |
Lamperti, John. 1966. Probability: A Survey of the Mathematical Theory New York: Benjamin.. [Lamperti 1966] |
Библиографическая ссылка |
Mahler, K. 1981. p-adic Numbers and Their Functions, , 2nd ed. Cambridge: Cambridge Univ. Press.. [Mahler 1981] |
Библиографическая ссылка |
Ribenboim, P. 1979. 13 Lectures on Fermat's Last Theorem New York: Springer.. [Ribenboim 1979] |
Библиографическая ссылка |
Sándor, J. 1993. Zentralblatt Math., 764: 11018 [Sándor 1993], review of [Eswarathasan and Levine 1991] |