Автор |
Jacobson, Michael J. |
Автор |
Lukes, Richard F. |
Автор |
Williams, Hugh C. |
Дата выпуска |
1995 |
dc.description |
It is well known that the nontorsion part of the unit group of a real quadratic field K is cyclic. With no loss of generality we may assume that it has a generator ∊<sub>0</sub> > 1, called the fundamental unit of K. The natural logarithm of ∊<sub>0</sub> is called the regulator R of K. This paper considers the following problems: How large, and how small, can R get? And how often?The answer is simple for the problem of how small R can be, but seems to be extremely difficult for the question of how large R can get. In order to investigate this, we conducted several large-scalenumerical experiments, involving the ExtendedRiemann Hypothesis and the Cohen-Lenstra class number heuristics. These experiments provide numerical confirmation for what is currently believed about the magnitude of R. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
An Investigation of Bounds for the Regulator of Quadratic Fields |
Тип |
research-article |
DOI |
10.1080/10586458.1995.10504322 |
Electronic ISSN |
1944-950X |
Print ISSN |
1058-6458 |
Журнал |
Experimental Mathematics |
Том |
4 |
Первая страница |
211 |
Последняя страница |
225 |
Аффилиация |
Jacobson, Michael J.; Department of Computer Science, University of Manitoba |
Аффилиация |
Lukes, Richard F.; Department of Computer Science, University of Manitoba |
Аффилиация |
Williams, Hugh C.; Department of Computer Science, University of Manitoba |
Выпуск |
3 |
Библиографическая ссылка |
Bach, E. 1994. “Improved approximations for Euler products” [Bach 1994], unpublished manuscript |
Библиографическая ссылка |
Chowla, S. 1949. “Improvement of a theorem of Linnik and Walfisz”. Proc. London Math. Soc., 50: 423–429. [Chowla 1949] |
Библиографическая ссылка |
Cohen, H., Diaz y Diaz, F. and Olivier, M. 1993. “Calculs de nombres de classes et de régulateurs de corps quadratiques en temps sousexponentiel”.”. In Séminaire de Théorie des Nombres de Paris 1990–1991 35–46. Boston: Birkhäuser.. [Cohen et al. 1993], Progress in Math. 108 |
Библиографическая ссылка |
Cohen, H. and Lenstra, H. W. Jr. 1983. “Heuristics on class groups”.”. In Number Theory, CUNY, 1982 Edited by: Chudnovsky, D. V. 26–36. New York: Springer.. [Cohen and Lenstra 1983], Lecture Notes in Math. 1052 |
Библиографическая ссылка |
Cohen, H. and Lenstra, H. W. Jr. 1984. “Heuristics on class groups of number fields”.”. In Number Theory, Noordwijkerhout, 1983 Edited by: Jager, H. 33–62. New York: Springer.. [Cohen and Lenstra 1984], Lecture Notes in Math. 1068 |
Библиографическая ссылка |
Elliot, P. D. T. A. 1969. “On the size of L(1,χ)”. J. reine angew. Math., 236: 26–36. [Elliot 1969] |
Библиографическая ссылка |
Halter-Koch, F. 1989. “Reell-quadratischer Zahlkörper mit größer Grundeinheit”. Abh. Math. Sem. Univ. Hamburg, 59: 171–181. [Halter-Koch 1989] |
Библиографическая ссылка |
Hooley, C. 1984. “On the Pellian equation and the class number of indefinite binary quadratic forms”. J. reine angew. Math., 353: 98–131. [Hooley 1984] |
Библиографическая ссылка |
Hua, L. K. 1982. Introduction to Number Theory New York: Springer.. [Hua 1982] |
Библиографическая ссылка |
Joshi, P. T. 1970. “The size of L(1,χ) for real nonprincipal residue characters χ with prime modulus”. J. Number Theory, 2: 58–73. [Joshi 1970] |
Библиографическая ссылка |
Landau, E. 1936. “On a Titchmarsh–Estermann sum”. J. London Math. Soc., 11: 242–245. [Landau 1936] |
Библиографическая ссылка |
Lehmer, D. H., Lehmer, E. and Shanks, D. 1970. “Integer sequences having prescribed quadratic character”. Math. Comp., 24: 433–451. [Lehmer et al. 1970] |
Библиографическая ссылка |
Lenstra, H. W. Jr. 1982. “On the Calculation of Regulators and Class Numbers of Quadratic Fields”.”. In Number Theory Days 123–150. Cambridge: Cambridge U. Press.. [Lenstra 1982], Exeter, 1980, London Math. Soc. Lecture Note Series 56 |
Библиографическая ссылка |
Littlewood, J. E. 1928. “On the class number of the corpus P(√−k)”. Proc. London Math. Soc., 27: 358–372. [Littlewood 1928] |
Библиографическая ссылка |
Lukes, R. F., Patterson, C. D. and Williams, H. C. 1995. “Numerical Sieving Devices: Their History and Some Applications”. Nieuw Archief voor Wiskunde (4), 13: 113–139. [Lukes et al. 1995] |
Библиографическая ссылка |
Lukes, R. F., Patterson, C. D. and Williams, H. C. “Some results on pseudosquares” [Lukes et al. a], to appear in Math. Comp. |
Библиографическая ссылка |
Mollin, R. A. and Williams, H. C. 1992. “Computation of the class number of a real quadratic field”. Utilitas Math., 41: 259–308. [Mollin and Williams] |
Библиографическая ссылка |
Nagell, T. 1922. “Zur Arithmetik der Polynome”. Abh. Math. Sem. Univ. Hamburg, 1: 179–194. [Nagell 1922] |
Библиографическая ссылка |
Oesterlé, J. 1978. “Versions effectives du théorème de Chebotarev sous l'hypothése de Riemann généralisée”.”. In Journées arithmétiques 165–167. Luminy.. [Oesterlé 1979], Astérisque 61, Soc. Math. de France, Paris, 1979 |
Библиографическая ссылка |
Shanks, D. 1969. “Class number, a theory of factorization and genera”.”. In Number Theory Institute 415–440. Stony Brook.. [Shanks 1971], Proc. Symp. Pure Math. 20, Amer. Math. Soc., Providence, 1971 |
Библиографическая ссылка |
Shanks, D. 1973. “Systematic examination of Littlewood's bounds on L(1,χ)”.”. In Analytic number theory, St. Louis, 1972 Edited by: Diamond, H. G. 267–283. Providence: Amer. Math. Soc.. [Shanks 1973], Proc. Symp. Pure Math. 24 |
Библиографическая ссылка |
Stephens, A. J. and Williams, H. C. 1988. “Computation of real quadratic fields with class number one”. Math. Comp., 51: 809–824. [Stephens and Williams 1988] |