Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Jacobson, Michael J.
Автор Lukes, Richard F.
Автор Williams, Hugh C.
Дата выпуска 1995
dc.description It is well known that the nontorsion part of the unit group of a real quadratic field K is cyclic. With no loss of generality we may assume that it has a generator ∊<sub>0</sub> > 1, called the fundamental unit of K. The natural logarithm of ∊<sub>0</sub> is called the regulator R of K. This paper considers the following problems: How large, and how small, can R get? And how often?The answer is simple for the problem of how small R can be, but seems to be extremely difficult for the question of how large R can get. In order to investigate this, we conducted several large-scalenumerical experiments, involving the ExtendedRiemann Hypothesis and the Cohen-Lenstra class number heuristics. These experiments provide numerical confirmation for what is currently believed about the magnitude of R.
Формат application.pdf
Издатель Taylor & Francis Group
Копирайт Copyright Taylor and Francis Group, LLC
Название An Investigation of Bounds for the Regulator of Quadratic Fields
Тип research-article
DOI 10.1080/10586458.1995.10504322
Electronic ISSN 1944-950X
Print ISSN 1058-6458
Журнал Experimental Mathematics
Том 4
Первая страница 211
Последняя страница 225
Аффилиация Jacobson, Michael J.; Department of Computer Science, University of Manitoba
Аффилиация Lukes, Richard F.; Department of Computer Science, University of Manitoba
Аффилиация Williams, Hugh C.; Department of Computer Science, University of Manitoba
Выпуск 3
Библиографическая ссылка Bach, E. 1994. “Improved approximations for Euler products” [Bach 1994], unpublished manuscript
Библиографическая ссылка Chowla, S. 1949. “Improvement of a theorem of Linnik and Walfisz”. Proc. London Math. Soc., 50: 423–429. [Chowla 1949]
Библиографическая ссылка Cohen, H., Diaz y Diaz, F. and Olivier, M. 1993. “Calculs de nombres de classes et de régulateurs de corps quadratiques en temps sousexponentiel”.”. In Séminaire de Théorie des Nombres de Paris 1990–1991 35–46. Boston: Birkhäuser.. [Cohen et al. 1993], Progress in Math. 108
Библиографическая ссылка Cohen, H. and Lenstra, H. W. Jr. 1983. “Heuristics on class groups”.”. In Number Theory, CUNY, 1982 Edited by: Chudnovsky, D. V. 26–36. New York: Springer.. [Cohen and Lenstra 1983], Lecture Notes in Math. 1052
Библиографическая ссылка Cohen, H. and Lenstra, H. W. Jr. 1984. “Heuristics on class groups of number fields”.”. In Number Theory, Noordwijkerhout, 1983 Edited by: Jager, H. 33–62. New York: Springer.. [Cohen and Lenstra 1984], Lecture Notes in Math. 1068
Библиографическая ссылка Elliot, P. D. T. A. 1969. “On the size of L(1,χ)”. J. reine angew. Math., 236: 26–36. [Elliot 1969]
Библиографическая ссылка Halter-Koch, F. 1989. “Reell-quadratischer Zahlkörper mit größer Grundeinheit”. Abh. Math. Sem. Univ. Hamburg, 59: 171–181. [Halter-Koch 1989]
Библиографическая ссылка Hooley, C. 1984. “On the Pellian equation and the class number of indefinite binary quadratic forms”. J. reine angew. Math., 353: 98–131. [Hooley 1984]
Библиографическая ссылка Hua, L. K. 1982. Introduction to Number Theory New York: Springer.. [Hua 1982]
Библиографическая ссылка Joshi, P. T. 1970. “The size of L(1,χ) for real nonprincipal residue characters χ with prime modulus”. J. Number Theory, 2: 58–73. [Joshi 1970]
Библиографическая ссылка Landau, E. 1936. “On a Titchmarsh–Estermann sum”. J. London Math. Soc., 11: 242–245. [Landau 1936]
Библиографическая ссылка Lehmer, D. H., Lehmer, E. and Shanks, D. 1970. “Integer sequences having prescribed quadratic character”. Math. Comp., 24: 433–451. [Lehmer et al. 1970]
Библиографическая ссылка Lenstra, H. W. Jr. 1982. “On the Calculation of Regulators and Class Numbers of Quadratic Fields”.”. In Number Theory Days 123–150. Cambridge: Cambridge U. Press.. [Lenstra 1982], Exeter, 1980, London Math. Soc. Lecture Note Series 56
Библиографическая ссылка Littlewood, J. E. 1928. “On the class number of the corpus P(√−k)”. Proc. London Math. Soc., 27: 358–372. [Littlewood 1928]
Библиографическая ссылка Lukes, R. F., Patterson, C. D. and Williams, H. C. 1995. “Numerical Sieving Devices: Their History and Some Applications”. Nieuw Archief voor Wiskunde (4), 13: 113–139. [Lukes et al. 1995]
Библиографическая ссылка Lukes, R. F., Patterson, C. D. and Williams, H. C. “Some results on pseudosquares” [Lukes et al. a], to appear in Math. Comp.
Библиографическая ссылка Mollin, R. A. and Williams, H. C. 1992. “Computation of the class number of a real quadratic field”. Utilitas Math., 41: 259–308. [Mollin and Williams]
Библиографическая ссылка Nagell, T. 1922. “Zur Arithmetik der Polynome”. Abh. Math. Sem. Univ. Hamburg, 1: 179–194. [Nagell 1922]
Библиографическая ссылка Oesterlé, J. 1978. “Versions effectives du théorème de Chebotarev sous l'hypothése de Riemann généralisée”.”. In Journées arithmétiques 165–167. Luminy.. [Oesterlé 1979], Astérisque 61, Soc. Math. de France, Paris, 1979
Библиографическая ссылка Shanks, D. 1969. “Class number, a theory of factorization and genera”.”. In Number Theory Institute 415–440. Stony Brook.. [Shanks 1971], Proc. Symp. Pure Math. 20, Amer. Math. Soc., Providence, 1971
Библиографическая ссылка Shanks, D. 1973. “Systematic examination of Littlewood's bounds on L(1,χ)”.”. In Analytic number theory, St. Louis, 1972 Edited by: Diamond, H. G. 267–283. Providence: Amer. Math. Soc.. [Shanks 1973], Proc. Symp. Pure Math. 24
Библиографическая ссылка Stephens, A. J. and Williams, H. C. 1988. “Computation of real quadratic fields with class number one”. Math. Comp., 51: 809–824. [Stephens and Williams 1988]

Скрыть метаданые