Автор |
Biase, Fausto Di |
Автор |
Urbanke, Rüdiger |
Дата выпуска |
1995 |
dc.description |
We propose an improvement upon the standard algorithm for computing the kernel of a polynomial map, assuming that the map sendsmonomials into monomials. Rather than computing a Gräbner basis in the joint polynomial ring, and then selecting only the elements of interest, we show that a moderate number of iterations of the Buchberger algorithm in the variables of the domain suffices. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
An Algorithm to Calculate the Kernel of Certain Polynomial Ring Homomorphisms |
Тип |
research-article |
DOI |
10.1080/10586458.1995.10504323 |
Electronic ISSN |
1944-950X |
Print ISSN |
1058-6458 |
Журнал |
Experimental Mathematics |
Том |
4 |
Первая страница |
227 |
Последняя страница |
234 |
Аффилиация |
Biase, Fausto Di; Department of Mathematics, Princeton University |
Аффилиация |
Urbanke, Rüdiger; Room 2C-254, AT&T Bell Labs |
Выпуск |
3 |
Библиографическая ссылка |
Adams, W. W. and Loustaunau, P. 1994. An Introduction to Gröbner Bases Providence: Amer. Math. Soc.. [Adams and Loustaunau 1994], Graduate Studies in Math. 3 |
Библиографическая ссылка |
Batut, C., Bernardi, D., Cohen, H. and Olivier, M. User's Guide to Pari-GP. [Batut et al. 1993], This manual is part of the program distribution, available by anonymous ftp from the host megrez.ceremab.u-bordeaux.fr. |
Библиографическая ссылка |
Bayer, D. and Stillman, M. Macaulay: A Computer Algebra System for Algebraic Geometry. [Bayer and Stillman], This manual is part of the program distribution, available by anonymous ftp from the host available by anonymous ftp from zariski.harvard.edu |
Библиографическая ссылка |
Buchberger, B. 1985. “Gröbner bases: An algorithmic method in polynomial ideal theory”, Chapter 6.”. In Multidimensional Systems Theory Edited by: Bose, N. K. Dordrecht and Boston: D. Reidel.. [Buchberger 1985] |
Библиографическая ссылка |
Cohen, H. 1993. A Course in Computational Algebraic Number Theory New York: Springer.. [Cohen 1993], Graduate Texts in Math. 138 |
Библиографическая ссылка |
Conti, P. and Traverso, C. 1991. “Gröbner bases and integer programming”.”. In Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes, New Orleans, 1991 Edited by: Mattson, H. F. 130–139. Berlin: Springer.. [Conti and Traverso 1991], Lecture Notes in Computer Science 539 |
Библиографическая ссылка |
Cox, D., Little, J. and O'Shea, D. 1991. Ideals, Varieties, and Algorithms New York: Springer.. [Cox et al. 1991], Undergraduate Texts in Math. |
Библиографическая ссылка |
Diaconis, P. and Sturmfels, B. “Algebraic algorithms for sampling from conditional distributions” [Diaconis and Sturmfels], to appear in Ann. Stat. |
Библиографическая ссылка |
Herzog, J. 1970. “Generators and relations of abelian semigroups and semigroup rings,”. Manuscripta Math., 3: 175–193. [Herzog 1970] |
Библиографическая ссылка |
Hosten, S. and Sturmfels, B. 1994. “GRIN: An implementation of Gröbner bases for integer programming” [Hosten and Sturmfels 1994], (for information contact Hosten at serkan@math.berkeley.edu) |
Библиографическая ссылка |
Marinari, M., Möller, H. and Mora, T. 1993. “Gröbner bases of ideals defined by functionals with an application to ideals of projective points”. Appl. Algebra Eng. Commun. Comput., 4: 103–145. [Marinari et al. 1993] |
Библиографическая ссылка |
Natraj, N. R., Tayur, S. R. and Thomas, R. R. “An algebraic geometry algorithm for scheduling in the presence of setups and correlated demands” [Natraj et al.], to appear in Math. Programming. |
Библиографическая ссылка |
Thomas, R. R. “A geometric Buchberger algorithm for integer programming” [Thomas], to appear in Math. Oper. Res. |
Библиографическая ссылка |
Wolfram, S. 1991. Mathematica: A System for Doing Mathematics by Computer, , 2nd ed. Reading, MA: Addison-Wesley.. [Wolfram 1991] |