Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Paule, Peter
Дата выпуска 1996
dc.description From numerical experiments, D. E. Knuth conjectured that 0 < D <sub>n+4</sub> < D <sub>n</sub> for a combinatorial sequence (D<sub>n</sub> ) defined as the difference D<sub>n</sub> = R<sub>n</sub> – L<sub>n</sub> of two definite hypergeometric sums. The conjecture implies.an identity of type L<sub>n</sub> = |R<sub>n</sub> |, involving the floor function. We prove Knuth's conjecture by applying Zeilberger's algorithm as well as classical hypergeometric machinery.
Формат application.pdf
Издатель Taylor & Francis Group
Копирайт Copyright Taylor and Francis Group, LLC
Название A Proof of a Conjecture of Knuth
Тип research-article
DOI 10.1080/10586458.1996.10504579
Electronic ISSN 1944-950X
Print ISSN 1058-6458
Журнал Experimental Mathematics
Том 5
Первая страница 83
Последняя страница 89
Аффилиация Paule, Peter; Institut für Mathematik, RISC, J. Kepler Universitat Linz
Выпуск 2
Библиографическая ссылка Andrews, G. E. 1996. “PfafF's method III: comparison with the WZ method”. Electronic. J. Comb., R21: 18 [Andrews 1996]
Библиографическая ссылка Andrews, G. E. “Pfaff's method I: the Mills-Robbins-Rumsey determinant” [Andrews a], to appear in Discrete Math.
Библиографическая ссылка Andrews, G. E. “PfafF's method II: diverse applications” [Andrews b], to appear in J. Comput. Appl. Math.
Библиографическая ссылка Bailey, W. N. 1928. “Products of generalized hypergeometric series”. Proc. London Math. Soc., 28: 242–254. [Bailey 1928]
Библиографическая ссылка Gessel, I. and Stanton, D. 1982. “Strange evaluations of hypergeometric series”. SIAM J. Math. Anal., 13: 295–308. [Gessel and Stanton 1982]
Библиографическая ссылка Graham, R. L., Knuth, D. E. and Patashnik, O. 1994. Concrete Mathematics, A Foundation for Computer Science, , 2nd ed. Reading, MA: Addison-Wesley.. [Graham et al. 1994]
Библиографическая ссылка Karlsson, P. W. 1995. Clausen's hypergeometric series with variable ¼J. Math. Anal. Appl., 196: 172–180. [Karlsson 1995]
Библиографическая ссылка Knuth, D. E. 1994. [Knuth 1994], letter of August 30, to the editor
Библиографическая ссылка Krattenthaler, C. “HYP and HYPQ: Mathematica packages for the manipulation of binomial sums and hypergeometric series, respectively -binomial sums and basic hypergeometric series”.”. In J. Symb. Comput. Edited by: Paule, P. and Strehl, V. [Krattenthaler 1996], The software is available at, to appear in, (special issue on “Symbolic Computation in Combinatorics dgr;1”, ftp://pap.univie.ac.at
Библиографическая ссылка Paule, P. and Schorn, M. “A Mathematica version of Zeilberger's algorithm for proving binomial coefficient identities” [Paule and Schorn 1995], RISC-Linz, Report Series 95–10; to appear in J. Symb. Comput. (special issue on “Symbolic Computation in Combinatorics dgr;1”, edited by P. Paule and V. Strehl). The softare is available at ftp://ftp.risc.unilinz.ac.at/pub/combinatorics/mathematica/PauleSchorn
Библиографическая ссылка Takayama, N. “An algorithm for finding recurrence relations of binomial sums and its complexity”.”. In J. Symb. Comput. (special issue on “Symbolic Computation in Combinatorics dgr;i” Edited by: Paule, P. and Strehl, V. [Takayama 1996]

Скрыть метаданые