Автор |
Paule, Peter |
Дата выпуска |
1996 |
dc.description |
From numerical experiments, D. E. Knuth conjectured that 0 < D <sub>n+4</sub> < D <sub>n</sub> for a combinatorial sequence (D<sub>n</sub> ) defined as the difference D<sub>n</sub> = R<sub>n</sub> – L<sub>n</sub> of two definite hypergeometric sums. The conjecture implies.an identity of type L<sub>n</sub> = |R<sub>n</sub> |, involving the floor function. We prove Knuth's conjecture by applying Zeilberger's algorithm as well as classical hypergeometric machinery. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
A Proof of a Conjecture of Knuth |
Тип |
research-article |
DOI |
10.1080/10586458.1996.10504579 |
Electronic ISSN |
1944-950X |
Print ISSN |
1058-6458 |
Журнал |
Experimental Mathematics |
Том |
5 |
Первая страница |
83 |
Последняя страница |
89 |
Аффилиация |
Paule, Peter; Institut für Mathematik, RISC, J. Kepler Universitat Linz |
Выпуск |
2 |
Библиографическая ссылка |
Andrews, G. E. 1996. “PfafF's method III: comparison with the WZ method”. Electronic. J. Comb., R21: 18 [Andrews 1996] |
Библиографическая ссылка |
Andrews, G. E. “Pfaff's method I: the Mills-Robbins-Rumsey determinant” [Andrews a], to appear in Discrete Math. |
Библиографическая ссылка |
Andrews, G. E. “PfafF's method II: diverse applications” [Andrews b], to appear in J. Comput. Appl. Math. |
Библиографическая ссылка |
Bailey, W. N. 1928. “Products of generalized hypergeometric series”. Proc. London Math. Soc., 28: 242–254. [Bailey 1928] |
Библиографическая ссылка |
Gessel, I. and Stanton, D. 1982. “Strange evaluations of hypergeometric series”. SIAM J. Math. Anal., 13: 295–308. [Gessel and Stanton 1982] |
Библиографическая ссылка |
Graham, R. L., Knuth, D. E. and Patashnik, O. 1994. Concrete Mathematics, A Foundation for Computer Science, , 2nd ed. Reading, MA: Addison-Wesley.. [Graham et al. 1994] |
Библиографическая ссылка |
Karlsson, P. W. 1995. Clausen's hypergeometric series with variable ¼J. Math. Anal. Appl., 196: 172–180. [Karlsson 1995] |
Библиографическая ссылка |
Knuth, D. E. 1994. [Knuth 1994], letter of August 30, to the editor |
Библиографическая ссылка |
Krattenthaler, C. “HYP and HYPQ: Mathematica packages for the manipulation of binomial sums and hypergeometric series, respectively -binomial sums and basic hypergeometric series”.”. In J. Symb. Comput. Edited by: Paule, P. and Strehl, V. [Krattenthaler 1996], The software is available at, to appear in, (special issue on “Symbolic Computation in Combinatorics dgr;1”, ftp://pap.univie.ac.at |
Библиографическая ссылка |
Paule, P. and Schorn, M. “A Mathematica version of Zeilberger's algorithm for proving binomial coefficient identities” [Paule and Schorn 1995], RISC-Linz, Report Series 95–10; to appear in J. Symb. Comput. (special issue on “Symbolic Computation in Combinatorics dgr;1”, edited by P. Paule and V. Strehl). The softare is available at ftp://ftp.risc.unilinz.ac.at/pub/combinatorics/mathematica/PauleSchorn |
Библиографическая ссылка |
Takayama, N. “An algorithm for finding recurrence relations of binomial sums and its complexity”.”. In J. Symb. Comput. (special issue on “Symbolic Computation in Combinatorics dgr;i” Edited by: Paule, P. and Strehl, V. [Takayama 1996] |