| Автор | Buekenhout, Francis |
| Автор | Dehon, Michel |
| Автор | Leemans, Dimitri |
| Дата выпуска | 1996 |
| dc.description | Using a Cayley program, we get all firm, residually connected geometries whose rank-two residues satisfy the intersection. property, on which M <sub>ll</sub> acts flag-transitively, and in which the stabilizer of each element is a maximal subgroup of M <sub>ll</sub>. |
| Формат | application.pdf |
| Издатель | Taylor & Francis Group |
| Копирайт | Copyright Taylor and Francis Group, LLC |
| Название | All Geometries of the Mathieu Group M<sub>ll</sub> Based on Maximal Subgroups |
| Тип | research-article |
| DOI | 10.1080/10586458.1996.10504581 |
| Electronic ISSN | 1944-950X |
| Print ISSN | 1058-6458 |
| Журнал | Experimental Mathematics |
| Том | 5 |
| Первая страница | 101 |
| Последняя страница | 110 |
| Аффилиация | Buekenhout, Francis; Département de Mathématiques, C.P. 216, Université Libre de Bruxelles |
| Аффилиация | Dehon, Michel; Département de Mathématiques, C.P. 216, Universite Libre de Bruxelles |
| Аффилиация | Leemans, Dimitri; Département de Mathématiques, C.P. 216, Universite Libre de Bruxelles |
| Выпуск | 2 |
| Библиографическая ссылка | Buekenhout, F. 1986. “The geometry of the finite simple groups”.”. In Buildings and the Geometry of Diagrams Edited by: Rosati, L. A. 78Berlin: Springer.. [Buekenhout 1986], Lecture Notes in Mathematics 1181 |
| Библиографическая ссылка | Buekenhout, F. 1995. Handbook of Incidence Geometry Amsterdam: Elsevier.. [Buekenhout 1995] |
| Библиографическая ссылка | Buekenhout, F., Dehon, M. and Leemans, D. 1995. “An Atlas of residually weakly primitive geometries for small groups” Université Libre de Bruxelles.. [Buekenhout et al. 1995], preprint |
| Библиографическая ссылка | Cannon, J. J. “Cayley: A Language for Group Theory”. Computational Group Theory: Proceedings of the London Mathematical Society Symposium. Edited by: Atkinson, M. D. pp.145–183. London: Academic Press.. [Cannon 1984] |
| Библиографическая ссылка | Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A. 1985. Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups Oxford: Oxford University Press.. [Conway et al. 1985] |
| Библиографическая ссылка | Dehon, M. 1994. “Classifying geometries with CAYLEY”. J. Symbolic Computation, 17: 259–276. [Dehon 1994] |
| Библиографическая ссылка | Liebeck, M. W., Praeger, C. E. and Saxl, J. 1990. “The maximal factorizations of the finite simple groups and their automorphism groups”. Memoirs Amer. Math. Soc., 432 [Liebeck 1990] |
| Библиографическая ссылка | Tits, J. 1962. “Géeoméetries polyéedriques et groupes simples”.”. In Atti 2a Riunione Groupem. Math. Express. Lat. Firenze 66–88. [Tits 1962] |