Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Tompaidis, Stathis
Дата выпуска 1996
dc.description The existence of an invariant surface in high-dimensional systems greatly influences the. behavior in a neighborhood of the invariant surface. We prove theorems that predict the behavior of periodic orbits in the vicinity of an invariant surface on which the motion is conjugate to a Diophantine rotation for symplectic maps and quasiperiodic perturbations of symplectic maps. Our results allow for efficient numerical algorithms that can serve as an indication for the breakdown of invariant surfaces.
Формат application.pdf
Издатель Taylor & Francis Group
Копирайт Copyright Taylor and Francis Group, LLC
Название Approximation of Invariant Surfaces by Periodic Orbits in High-Dimensional Maps: Some Rigorous Results
Тип research-article
DOI 10.1080/10586458.1996.10504588
Electronic ISSN 1944-950X
Print ISSN 1058-6458
Журнал Experimental Mathematics
Том 5
Первая страница 197
Последняя страница 209
Аффилиация Tompaidis, Stathis; Department of Mathematics, University of Toronto
Выпуск 3
Библиографическая ссылка Artuso, R., Casati, G. and Shepelyansky, D. L. 1991. “Breakdown of universality in renormalization dynamics for critical invariant torus”. Europhys. Lett., 15: 381–386. [Artuso et al. 1991]
Библиографическая ссылка Arnol'd, V. I. 1988. Geometrical Methods in the Theory of Ordinary Differential Equations, , 2nd ed. Berlin: Springer.. [Arnol'd 1988]
Библиографическая ссылка Bernstein, D. and Katok, A. 1987. “Birkhoff periodic orbits for small perturbations of completely integrable Hamiltonian systems with convex Hamiltonians”. Invent. Math., 88: 225–241. [Bernstein and Katok 1987]
Библиографическая ссылка Fassò, F. and Benettin, G. 1989. “Composition of Lie transforms with rigorous estimates and applications to Hamiltonian perturbation theory”. Z. Angew. Math. Phys., 40: 307–329. [Fassò and Benettin 1989]
Библиографическая ссылка Falcolini, C. and de la Llave, R. 1992. “A rigorous partial justification of Greene's criterion”. Jour. Stat. Phys., 67: 609–643. [Falcolini and Llave 1992]
Библиографическая ссылка Greene, J. M. 1979. “A method for determining a stochastic transition”. J. Math. Phys., 20: 1183–1201. [Greene 1979]
Библиографическая ссылка Kosygin, D. V. 1991. “Multidimensional KAM theory for the renormalization group viewpoint”.”. In Dynamical Systems and Statistical Mechanics Edited by: Sinai, Ya. G. 99–129. Providence: Amer. Math. Soc.. [Kosygin 1991], Adv. Sov. Math. 3
Библиографическая ссылка de la Llave, R. and Tompaidis, S. 1994. “Computation of domains of analyticity for some perturbative expansions of mechanics”. Physica, D71: 55–81. [Llave and Tompaidis 1994]
Библиографическая ссылка de la Llave, R. and Wayne, C. E. “Whiskered and low dimensional tori in nearly integrable Hamiltonian systems” [Llave and Wayne 1989], preprint available at the URLs ftp://ftp.ma.utexas.edu/pub/papers/llave/whiskersl.psand…/whiskers2.ps
Библиографическая ссылка Mather, J. N. 1991. “Variational construction of orbits of twist diffeomorphisms”. Jour. Amer. Math. Soc., 4: 207–263. [Mather 1991]
Библиографическая ссылка MacKay, R. S. 1982. “Renormalization in area preserving maps”, Ph.D. thesis Princeton University.. [MacKay 1982]
Библиографическая ссылка MacKay, R. S. 1992. “On Greene's residue criterion”. Nonlinearity, 5: 161–187. [MacKay 1992]
Библиографическая ссылка MacKay, R. S., Meiss, J. D. and Stark, J. 1994. “An approximate renormalization for the break-up of invariant tori with three frequencies”. Phys. Lett., A190: 417–424. [MacKay et al. 1994]
Библиографическая ссылка Poincaré, H. 1993. Méthodes nouvelles de la mécanique celeste Edited by: Goroff, D. 3 vols., Woodbury, NY: Amer. Inst. Phys.. [Poincaré 1892], Paris, Gauthier-Villars, 1892–99. English translation: New methods of celestial mechanics, History of modern physics and astronomy 13
Библиографическая ссылка Perry, A. D. and Wiggins, S. 1994. “KAM tori are very sticky: rigorous lower bounds on the time to move away from an invariant Lagrangian torus with linear flow”. Physica, D71: 102–121. [Perry and Wiggins 1994]
Библиографическая ссылка Rüssmann, H. 1975. “On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus”.”. In Dynamical Systems: Theory and Applications Edited by: Moser, J. 598–624. Berlin: Springer.. [Rüssmann 1975], Lecture Notes in Physics 38
Библиографическая ссылка Rüssmann, H. 1976. “Note on sums containing small divisors”. Commun. Pure Appl. Math, 29: 755 [Rüssmann 1976]
Библиографическая ссылка Siegel, C. L. and Moser, J. 1971. Lectures on Celestial Mechanics Berlin: Springer.. [Siegel and Moser 1971], Grundlehren der mathematischen Wissenschaften 187
Библиографическая ссылка Tompaidis, S. 1996. “Numerical study of invariant sets of a quasi-periodic perturbation of a symplectic map”. Experimental Mathematics, 5: 211–230. [Tompaidis 1996]

Скрыть метаданые