Автор |
Tompaidis, Stathis |
Дата выпуска |
1996 |
dc.description |
The existence of an invariant surface in high-dimensional systems greatly influences the. behavior in a neighborhood of the invariant surface. We prove theorems that predict the behavior of periodic orbits in the vicinity of an invariant surface on which the motion is conjugate to a Diophantine rotation for symplectic maps and quasiperiodic perturbations of symplectic maps. Our results allow for efficient numerical algorithms that can serve as an indication for the breakdown of invariant surfaces. |
Формат |
application.pdf |
Издатель |
Taylor & Francis Group |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
Approximation of Invariant Surfaces by Periodic Orbits in High-Dimensional Maps: Some Rigorous Results |
Тип |
research-article |
DOI |
10.1080/10586458.1996.10504588 |
Electronic ISSN |
1944-950X |
Print ISSN |
1058-6458 |
Журнал |
Experimental Mathematics |
Том |
5 |
Первая страница |
197 |
Последняя страница |
209 |
Аффилиация |
Tompaidis, Stathis; Department of Mathematics, University of Toronto |
Выпуск |
3 |
Библиографическая ссылка |
Artuso, R., Casati, G. and Shepelyansky, D. L. 1991. “Breakdown of universality in renormalization dynamics for critical invariant torus”. Europhys. Lett., 15: 381–386. [Artuso et al. 1991] |
Библиографическая ссылка |
Arnol'd, V. I. 1988. Geometrical Methods in the Theory of Ordinary Differential Equations, , 2nd ed. Berlin: Springer.. [Arnol'd 1988] |
Библиографическая ссылка |
Bernstein, D. and Katok, A. 1987. “Birkhoff periodic orbits for small perturbations of completely integrable Hamiltonian systems with convex Hamiltonians”. Invent. Math., 88: 225–241. [Bernstein and Katok 1987] |
Библиографическая ссылка |
Fassò, F. and Benettin, G. 1989. “Composition of Lie transforms with rigorous estimates and applications to Hamiltonian perturbation theory”. Z. Angew. Math. Phys., 40: 307–329. [Fassò and Benettin 1989] |
Библиографическая ссылка |
Falcolini, C. and de la Llave, R. 1992. “A rigorous partial justification of Greene's criterion”. Jour. Stat. Phys., 67: 609–643. [Falcolini and Llave 1992] |
Библиографическая ссылка |
Greene, J. M. 1979. “A method for determining a stochastic transition”. J. Math. Phys., 20: 1183–1201. [Greene 1979] |
Библиографическая ссылка |
Kosygin, D. V. 1991. “Multidimensional KAM theory for the renormalization group viewpoint”.”. In Dynamical Systems and Statistical Mechanics Edited by: Sinai, Ya. G. 99–129. Providence: Amer. Math. Soc.. [Kosygin 1991], Adv. Sov. Math. 3 |
Библиографическая ссылка |
de la Llave, R. and Tompaidis, S. 1994. “Computation of domains of analyticity for some perturbative expansions of mechanics”. Physica, D71: 55–81. [Llave and Tompaidis 1994] |
Библиографическая ссылка |
de la Llave, R. and Wayne, C. E. “Whiskered and low dimensional tori in nearly integrable Hamiltonian systems” [Llave and Wayne 1989], preprint available at the URLs ftp://ftp.ma.utexas.edu/pub/papers/llave/whiskersl.psand…/whiskers2.ps |
Библиографическая ссылка |
Mather, J. N. 1991. “Variational construction of orbits of twist diffeomorphisms”. Jour. Amer. Math. Soc., 4: 207–263. [Mather 1991] |
Библиографическая ссылка |
MacKay, R. S. 1982. “Renormalization in area preserving maps”, Ph.D. thesis Princeton University.. [MacKay 1982] |
Библиографическая ссылка |
MacKay, R. S. 1992. “On Greene's residue criterion”. Nonlinearity, 5: 161–187. [MacKay 1992] |
Библиографическая ссылка |
MacKay, R. S., Meiss, J. D. and Stark, J. 1994. “An approximate renormalization for the break-up of invariant tori with three frequencies”. Phys. Lett., A190: 417–424. [MacKay et al. 1994] |
Библиографическая ссылка |
Poincaré, H. 1993. Méthodes nouvelles de la mécanique celeste Edited by: Goroff, D. 3 vols., Woodbury, NY: Amer. Inst. Phys.. [Poincaré 1892], Paris, Gauthier-Villars, 1892–99. English translation: New methods of celestial mechanics, History of modern physics and astronomy 13 |
Библиографическая ссылка |
Perry, A. D. and Wiggins, S. 1994. “KAM tori are very sticky: rigorous lower bounds on the time to move away from an invariant Lagrangian torus with linear flow”. Physica, D71: 102–121. [Perry and Wiggins 1994] |
Библиографическая ссылка |
Rüssmann, H. 1975. “On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus”.”. In Dynamical Systems: Theory and Applications Edited by: Moser, J. 598–624. Berlin: Springer.. [Rüssmann 1975], Lecture Notes in Physics 38 |
Библиографическая ссылка |
Rüssmann, H. 1976. “Note on sums containing small divisors”. Commun. Pure Appl. Math, 29: 755 [Rüssmann 1976] |
Библиографическая ссылка |
Siegel, C. L. and Moser, J. 1971. Lectures on Celestial Mechanics Berlin: Springer.. [Siegel and Moser 1971], Grundlehren der mathematischen Wissenschaften 187 |
Библиографическая ссылка |
Tompaidis, S. 1996. “Numerical study of invariant sets of a quasi-periodic perturbation of a symplectic map”. Experimental Mathematics, 5: 211–230. [Tompaidis 1996] |