Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Khallouf, H.
Автор Gershuni, G. Z.
Автор Mojtabi, A.
Дата выпуска 1995
dc.description Two-dimensional thermovibrational convection in rectangular cavities under the condition of weightlessness is studied. The problem is based on the system of equations of the mean fields of velocity, pressure, and temperature. A pseudospeetral Chebyshev collocation method is used. The case of rectangular cavities (a layer of finite length) is considered subject to high-frequency transversal vibrations and a longitudinal temperature gradient. In the case of a square cavity the instability of the main flow exists, and the bifurcation to other symmetry takes place. The same behavior is observed when the cavity is elongated in the direction of the temperature gradient. It is shown that the intensity of the thermovibrational convective flow decreases, in general, while the aspect ratio increases in accordance with linear stability theory, in which it was proven that, in the limiting case of an infinitely long layer subject to a longitudinal temperature gradient and a transversal axis of vibrations, the absolute stability of the quasi-equilibrium state lakes place.
Формат application.pdf
Издатель Taylor & Francis Group
Копирайт Copyright Taylor and Francis Group, LLC
Название NUMERICAL STUDY OF TWO-DIMENSIONAL THERMOVIBRATIONAL CONVECTION IN RECTANGULAR CAVITIES
Тип research-article
DOI 10.1080/10407789508913701
Electronic ISSN 1521-0634
Print ISSN 1040-7782
Журнал Numerical Heat Transfer, Part A: Applications
Том 27
Первая страница 297
Последняя страница 305
Аффилиация Khallouf, H.; Laboratoire de Modélisation en Mecanique des Fluides, Institut de Mecanique des Fluides, Université Paul Sabatier
Аффилиация Gershuni, G. Z.; Department of Theoretical Physics, Perm State University
Аффилиация Mojtabi, A.; Laboratoire de Modélisation en Mecanique des Fluides, Institut de Mecanique des Fluides, Université Paul Sabatier
Выпуск 3

Скрыть метаданые