Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Heidema, Johannes
Дата выпуска 1990
dc.description Unrestricted use of the axiom schema of comprehension, ‘to every mathematically (or set-theoretically) describable property there corresponds the set of all mathematical (or set-theoretical) objects having that property’, leads to contradiction. In set theories of the Zermelo–Fraenkel–Skolem (ZFS) style suitable instances of the comprehension schema are chosen ad hoc as axioms, e.g.axioms which guarantee the existence of unions, intersections, pairs, subsets, empty set, power sets and replacement sets. It is demonstrated that a uniform syntactic description may be given of acceptable instances of the comprehension schema, which include all of the axioms mentioned, and which in their turn are theorems of the usual versions of ZFS set theory.Well then, shall we proceed as usual and begin by assuming the existence of a single essential nature or Form for every set of things which we call by the same name? Do you understand?(Plato, Republic X.596a6; cf. Cornford 1966, 317)
Формат application.pdf
Издатель Taylor & Francis
Копирайт Copyright Taylor and Francis Group, LLC
Название An axiom schema of comprehension of zermelo–fraenkel–skolem set theory
Тип research-article
DOI 10.1080/01445349008837157
Electronic ISSN 1464-5149
Print ISSN 0144-5340
Журнал History and Philosophy of Logic
Том 11
Первая страница 59
Последняя страница 65
Аффилиация Heidema, Johannes; Department of Mathematics, Rand Afrikaans University
Выпуск 1
Библиографическая ссылка Cornford, F. M . 1966. The Republic of Plato, Oxford: Clarendon Press.
Библиографическая ссылка Dauben, J. W. 1988. Cantorian set theory and limitations of size. British journal for the philosophy of science, 39: 541–550. (review of Hallett 1984)
Библиографическая ссылка Fraenkel, A. A., Bar-Hillel, Y., Levy, A. and Van Dalen, D. 1973. Foundations of set theory, 2nd, Amsterdam: North-Holland.
Библиографическая ссылка Hallett, M. 1984. Cantorian set theory and limitation of size, Oxford: Clarendon Press.
Библиографическая ссылка Levy, A. Parameters in comprehension axiom schemas of set theory. Proceedings of the Tarski symposium. Netherlands. Edited by: Henkin, L. pp.309–324. Rhode Island et Providence, alii
Библиографическая ссылка Quine, W. and Van, O. 1969. Set theory and its logic, Cambridge, Massachusetts: Belknap Press.
Библиографическая ссылка Shoenfield, J. R. 1977. “Axioms of set theory”. In Handbook of mathematical logic, Edited by: Barwise, J. 321–344. Amsterdam: North-Holland.
Библиографическая ссылка Wang, H. 1974. From mathematics to philosophy, London: Routledge and Kegan Paul.

Скрыть метаданые