Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Frazee, Jerome
Дата выпуска 1990
dc.description The algebra of sets has, basically, two different types of symbols. One type of symbol (∩, ∪, +, −) defines another set from two other sets. A second type of symbol (⊆, ⊂, =, ≠) makes a proposition about two sets. When the construction of these two types of symbols is based on the same four-dot matrix as the logic symbols described in a previous paper, the three symbol types then dovetail together into a harmonious whole that greatly simplifies derivation in the algebra of sets.
Формат application.pdf
Издатель Taylor & Francis
Копирайт Copyright Taylor and Francis Group, LLC
Название A new symbolic representation for the algebra of sets
Тип research-article
DOI 10.1080/01445349008837158
Electronic ISSN 1464-5149
Print ISSN 0144-5340
Журнал History and Philosophy of Logic
Том 11
Первая страница 67
Последняя страница 75
Аффилиация Frazee, Jerome; <sup>a</sup> 96130, California, U.S.A., 402 Richmond Road, Susanville
Выпуск 1
Библиографическая ссылка Cajori and Florian. 1928–1929. A history of mathematical notations, Vol. 2, Illinois: Open Court.
Библиографическая ссылка Carroll and Lewis. 1958. Symbolic logic and the game of logic, Edited by: William, W. Bartley. New York, Dover: Clarkson Potter. Originally published in 1886 and 1896. See also Lewis Carroll's symbolic logic III 1977
Библиографическая ссылка Davis, E. W. 1903. Some groups in logic. Bull. Amer. Math. Soc., 9: 346–348.
Библиографическая ссылка Feys, Robert and Fitch, F. B. 1969. Dictionary of symbols of mathematical logic, Amsterdam: North-Holland.
Библиографическая ссылка Frazee and Jerome. 1988. A new symbolic representation of the basic truth-functions of the prepositional calculus. Hist. philos. logic., 9: 87–91.
Библиографическая ссылка Gardner and Martin. 1958. Logic machines and diagrams, New York: McGraw-Hill.
Библиографическая ссылка McCulloch and Warren, S. 1965. Embodiments of mind, Cambridge: MIT Press. Mass
Библиографическая ссылка Menger and Karl. 1979. “A new point of view on the logical connectives”. In Selected papers in logic and foundations, didactics, economics, 68–78. Dordrecht, , Holland: Reidel.
Библиографическая ссылка Meridith and Patrick. 1970. “Developmental models of cognition”. In Cognition: a multiple view, Edited by: Paul, L. Garvin. 49–84. New York: Spartan Books.
Библиографическая ссылка Messenger, T. 1986. Expressing and using N-adic operators in the propositional calculus. J. symb. logic, 51: 1086
Библиографическая ссылка Parry and William, T. 1954. A new symbolism for the propositional calculus. J. symb. logic, 19: 161–168.
Библиографическая ссылка Peirce and Charles, Sanders. 1965. Annotated catalogue of the papers of Charles S. Peirce, Amherst: Univ. of Massachusetts Press. Manuscripts 429, 431, and 530, as listed in R. S. Robin
Библиографическая ссылка Piaget and Jean. 1957. Logic and psychology, New York: Basic Books.
Библиографическая ссылка Randolp and John, F. 1965. Cross-examining propositional calculus and set operations. Amer. math. monthly, 72: 117–127.
Библиографическая ссылка Standley and Gerald, B. 1954. Ideographic computation in the propositional calculus. J. symb. logic, 19: 169–171.
Библиографическая ссылка Stone, M. H. 1936. The theory of representations for Boolean algebras. Trans. Amer. Math. Soc., 40: 37–111.
Библиографическая ссылка Zellweger, S. 1982. Sign-creation and man–sign engineering. Semiotica, 38: 17–54.

Скрыть метаданые