Автор |
Frazee, Jerome |
Дата выпуска |
1990 |
dc.description |
The algebra of sets has, basically, two different types of symbols. One type of symbol (∩, ∪, +, −) defines another set from two other sets. A second type of symbol (⊆, ⊂, =, ≠) makes a proposition about two sets. When the construction of these two types of symbols is based on the same four-dot matrix as the logic symbols described in a previous paper, the three symbol types then dovetail together into a harmonious whole that greatly simplifies derivation in the algebra of sets. |
Формат |
application.pdf |
Издатель |
Taylor & Francis |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
A new symbolic representation for the algebra of sets |
Тип |
research-article |
DOI |
10.1080/01445349008837158 |
Electronic ISSN |
1464-5149 |
Print ISSN |
0144-5340 |
Журнал |
History and Philosophy of Logic |
Том |
11 |
Первая страница |
67 |
Последняя страница |
75 |
Аффилиация |
Frazee, Jerome; <sup>a</sup> 96130, California, U.S.A., 402 Richmond Road, Susanville |
Выпуск |
1 |
Библиографическая ссылка |
Cajori and Florian. 1928–1929. A history of mathematical notations, Vol. 2, Illinois: Open Court. |
Библиографическая ссылка |
Carroll and Lewis. 1958. Symbolic logic and the game of logic, Edited by: William, W. Bartley. New York, Dover: Clarkson Potter. Originally published in 1886 and 1896. See also Lewis Carroll's symbolic logic III 1977 |
Библиографическая ссылка |
Davis, E. W. 1903. Some groups in logic. Bull. Amer. Math. Soc., 9: 346–348. |
Библиографическая ссылка |
Feys, Robert and Fitch, F. B. 1969. Dictionary of symbols of mathematical logic, Amsterdam: North-Holland. |
Библиографическая ссылка |
Frazee and Jerome. 1988. A new symbolic representation of the basic truth-functions of the prepositional calculus. Hist. philos. logic., 9: 87–91. |
Библиографическая ссылка |
Gardner and Martin. 1958. Logic machines and diagrams, New York: McGraw-Hill. |
Библиографическая ссылка |
McCulloch and Warren, S. 1965. Embodiments of mind, Cambridge: MIT Press. Mass |
Библиографическая ссылка |
Menger and Karl. 1979. “A new point of view on the logical connectives”. In Selected papers in logic and foundations, didactics, economics, 68–78. Dordrecht, , Holland: Reidel. |
Библиографическая ссылка |
Meridith and Patrick. 1970. “Developmental models of cognition”. In Cognition: a multiple view, Edited by: Paul, L. Garvin. 49–84. New York: Spartan Books. |
Библиографическая ссылка |
Messenger, T. 1986. Expressing and using N-adic operators in the propositional calculus. J. symb. logic, 51: 1086 |
Библиографическая ссылка |
Parry and William, T. 1954. A new symbolism for the propositional calculus. J. symb. logic, 19: 161–168. |
Библиографическая ссылка |
Peirce and Charles, Sanders. 1965. Annotated catalogue of the papers of Charles S. Peirce, Amherst: Univ. of Massachusetts Press. Manuscripts 429, 431, and 530, as listed in R. S. Robin |
Библиографическая ссылка |
Piaget and Jean. 1957. Logic and psychology, New York: Basic Books. |
Библиографическая ссылка |
Randolp and John, F. 1965. Cross-examining propositional calculus and set operations. Amer. math. monthly, 72: 117–127. |
Библиографическая ссылка |
Standley and Gerald, B. 1954. Ideographic computation in the propositional calculus. J. symb. logic, 19: 169–171. |
Библиографическая ссылка |
Stone, M. H. 1936. The theory of representations for Boolean algebras. Trans. Amer. Math. Soc., 40: 37–111. |
Библиографическая ссылка |
Zellweger, S. 1982. Sign-creation and man–sign engineering. Semiotica, 38: 17–54. |