Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Jané, Ignacio
Дата выпуска 1993
dc.description Because of its capacity to characterize mathematical concepts and structures—a capacity which first-order languages clearly lack—second-order languages recommend themselves as a convenient framework for much of mathematics, including set theory. This paper is about the credentials of second-order logic:the reasons for it to be considered logic, its relations with set theory, and especially the efficacy with which it performs its role of the underlying logic of set theory
Формат application.pdf
Издатель Taylor & Francis
Копирайт Copyright Taylor and Francis Group, LLC
Название A critical appraisal of second-order logic
Тип research-article
DOI 10.1080/01445349308837210
Electronic ISSN 1464-5149
Print ISSN 0144-5340
Журнал History and Philosophy of Logic
Том 14
Первая страница 67
Последняя страница 86
Аффилиация Jané, Ignacio; Departamento de Lögica, Universidad de Barcelona
Выпуск 1
Библиографическая ссылка Bernays, P. 1934. “On Platonism in mathematics”. In Philosophy of mathematics. Selected readings, Edited by: Benacerraf, P. and Putnam, H. 258–271. London: Cambridge University Press.
Библиографическая ссылка Boolos, G. 1975. On second-order logic. The journal of philosophy, 72: 509–527.
Библиографическая ссылка Boolos, G. 1984. To be is to be the value of a variable (or to be some values of some variables). The journal of philosophy, 81: 430–449.
Библиографическая ссылка Boolos, G. and Jeffrey, R. 1980. Computability and logic, London: Cambridge University Press.
Библиографическая ссылка Church, A. 1956. Introduction to mathematical logic, Princeton: Princeton University Press.
Библиографическая ссылка Corcoran, J. 1973. “Gaps between logical theory and mathematical practice”. In The methodological unity of science, Edited by: Bunge, M. 23–50. Dordrecht: Reidel.
Библиографическая ссылка Drake, F. 1974. “Set theory”. In An introduction to large cardinals, Amsterdam: North-Holland.
Библиографическая ссылка Frege, G. 1984. “Collected papers”. Oxford: Basil Blackwell.
Библиографическая ссылка Friedman, H. 1971. Higher set theory and mathematical practice. Annals of mathematical logic, 2: 326–357.
Библиографическая ссылка Hallett, M. 1984. Cantorian set theory and limitation of size, Oxford: Clarendon Press.
Библиографическая ссылка Gödel, K. 1990. Collected works, Vol. II, Oxford: Oxford University Press.
Библиографическая ссылка Lewis, D. 1991. Parts of classes, Oxford: Basil Blackwell.
Библиографическая ссылка Moore, G. 1980. Beyond first-order logic:the historical interplay between logic and set theory. History and philosophy of logic, 1: 95–137.
Библиографическая ссылка Quine, W. 1963. Set theory and its logic, London: Cambridge University Press.
Библиографическая ссылка Quine, W. 1970. “Philosophy of logic”. Englewood Cliffs, N.J: Prentice-Hall.
Библиографическая ссылка Quine, W. 1987. Quiddities. An intermittently philosophical dictionary, London: Harvard University Press.
Библиографическая ссылка Russell, B. 1919. Introduction to mathematical philosophy, London: Allen & Unwin.
Библиографическая ссылка Shapiro, S. 1985. Second-order languages and mathematical practice. The journal of symbolic logic, 50: 714–742.
Библиографическая ссылка Shapiro, S. 1990. Second-order logic, foundations and rules. The journal of philosophy, 87: 234–261.
Библиографическая ссылка Shapiro, S. 1991. Foundations without foundationalism, Oxford: Clarendon Press.
Библиографическая ссылка Solovay, S. 1969. “On the cardinality of ∑ ½ sets of reals”. In Foundations of mathematics, Edited by: Bulloff, J. 58–73. Berlin: Springer.
Библиографическая ссылка Solovay, S. 1970. A model of set theory in which every set of reals is Lebesgue measurable. Annals of mathematics, 92: 1–56.
Библиографическая ссылка Weston, T. 1976. Kreisel, the continuum hypothesis and second-order set theory. Journal of philosophical logic, 5: 281–298.
Библиографическая ссылка Zermelo, E. 1930. Über Grenzzahlen und Mengenbereiche. Fundamenta mathematica, 16: 29–47.

Скрыть метаданые